《(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析).pdf》由会员分享,可在线阅读,更多相关《(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(含答案解析)一、选择题1启航学校的学生中,最大的12 岁,最小的6 岁,最多从中挑选()名学生,就一定能找到年龄相同的两名同学。A.8 B.13 C.72一个袋子里有红、白、蓝三种颜色的球各10 个,至少拿出()个,才能保证有3 个球的颜色相同。A.7 B.4 C.213把 4 个小球放在3 个口袋里,至少有一个口袋里装了()个小球。A.2 B.3 C.445 只小鸡被装进2 个鸡笼,总有一个鸡笼至少有()只小鸡。A.2 B.3 C.45从 8 个抽屉里拿出17 个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它
2、里面至少拿出()个苹果。A.1 B.2 C.3 D.461000 只鸽子飞进50 个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有()只鸽子。A.20 B.21 C.22 D.237把红、黄、蓝三种颜色的球各5 个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球A.4 B.5 C.68口袋里放有红、黄、白三种颜色的同样的钮扣各10 枚,至少取出()枚钮扣,才能保证三种颜色的钮扣都取到A.13 B.21 C.309将 6 个苹果放在3 个盘子里,至少有()个苹果放在同一个盘子里A.2 B.3 C.610清平中心小学98 班有 52 人,彭老师至少要拿()作业本随意发给学
3、生,才能保证至少有有个学生拿到2 本或 2 本以上的本子A.53 本B.52本C.104本11一个口袋里装有红、黄、蓝3 种不同颜色的小球各10 各,要摸出的球一定有2 个同色的,最少要摸()个A.10 B.11 C.41210 个孩子分进4 个班,则至少有一个班分到的学生人数不少于()个A.1 B.2 C.3 D.4二、填空题1313 本书放进3 个抽屉,不管怎么放,总有一个抽屉至少放进_本书14 制作这样10 张卡片,至少要抽出_张卡片才能保证既有偶数又有奇数。15 李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的。李叔叔的颜料最多有_种颜色。16 幼儿园有3
4、种玩具各若干件,每个小朋友任意拿2 件不同种类的玩具,至少有_个小朋友来拿,才能保证有2 个小朋友拿的玩具相同。17 一个袋子里装有4 个红球,5 个黄球和6 个绿球。若蒙眼去摸,为保证摸出的球中三种颜色都有,则至少要摸出_个球。18把 10 颗糖果分给4 个小朋友,总有一个小朋友至少分到_颗糖果。19一个旅游团中共有15 名游客,至少有_名游客的生日是同一个月的。20把红、黄、蓝、白四种颜色的球各8 个放到一个袋子里。至少要取_个球,才可以保证取到两个颜色相同的球。三、解答题21在一次世界极限运动会中,意大利、法国、美国、加拿大分别有7 名运动员参赛。(1)至少几人报名参加滑板街道赛,可以保
5、证有两人来自同一个国家?(2)至少有几人参加极限单车比赛,可以保证有来自两个国家的运动员?22 有 5 名同学参加科技比赛,团体总分为426 分,则总有一名同学的得分不低于多少分?(得分为整数)23 在张卡片上不重复地编写上 ,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被整除?24 一幅扑克牌有54 张,最少要抽取几张牌,方能保证其中至少有2 张牌有相同的点数?25从扑克牌中取出两张王牌,在剩下的52 张中任意取牌。(1)至少取多少张牌,保证有2 张牌的点数相同?(2)至少取多少张牌,保证有2 张牌的点数不同?(3)至少取多少张牌,保证有2 张红桃?26有黑色、白色、黄色
6、筷子各8 根,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少取多少根筷子才能保证达到要求?【参考答案】*试卷处理标记,请不要删除一、选择题1A 解析:A 【解析】【解答】7+1=8(名)。故答案为:A。【分析】6、7、8、9、10、11、12,一共 7 个年龄段,在从中挑选1 名学生,就一定能找到年龄相同的两名同学。2A 解析:A 【解析】【解答】32+1=7(个)故答案为:A【分析】由题意可知,按最坏的结果来看,拿出6 个球中有2 个红球、2 个白球、2 个蓝球,如果再拿出一个球,无论什么颜色,都能保证有3 个球颜色相同。3A 解析:A 【解析】【解答】43=1(个)1(个),至少:1+
7、1=2(个).故答案为:A.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此列式解答.4B 解析:B 【解析】【解答】52=2(只)1(只),至少:2+1=3(只).故答案为:B.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.5C 解析:C 【解析】【解答】解:178=21,2+1=3(个)。故答案为:C。【分析】从最坏的情况考虑,假设每个抽屉里面都有2 个苹果,余下的1 个苹果无论在哪个抽屉里都至少有一个抽屉里面有3 个苹果。6A 解析:A 【解析】【解答】解:10
8、0050=20(只)故答案为:A【分析】100050=20,从极端的情况考虑,假如每个巢里面的鸽子数都相等,都是20只,所以一定能找到一个含鸽子最多的巢,它里面至少有20 只鸽子.7A 解析:A 【解析】【解答】解:3+1=4(个);答:至少取4 个球,可以保证取到两个颜色相同的球故选:A【分析】由于袋子里共有红、黄、蓝三种颜色的球各5 个,如果一次取三个,最差情况为红、黄、蓝三种颜色各一个,所以只要再多取一个球,就能保证取到两个颜色相同的球即 3+1=4 个8B 解析:B 【解析】【解答】解:10+10+1=21(个)答:至少取出21 枚钮扣,才能保证三种颜色的钮扣都取到故选:B【分析】口袋
9、里放有红、黄、白三种颜色的同样的钮扣,最差的情况是头10 个都是同一种颜色的比如红的,此时还剩下黄、白两种颜色的,接着拿了10 个还是同一种颜色的,比如黄的,此时口袋内只剩下白色的了,最后再拿一个,三种颜色的钮扣都取到了,即至少要取出 10+10+1=21 个9A 解析:A 【解析】【解答】解:63=2(个)答:至少有2 个苹果放在同一个盘子里故选:A【分析】将6 个苹果放在3 个盘子里,至少有63=2个苹果放在同一个盘子里,据此解答即可10A 解析:A 【解析】【解答】解:根据题干分析可得:52+1=53(本),答:至少要拿53 本作业本故选:A【分析】把52 个同学看做52 个抽屉,要保证
10、至少有1 个学生拿到2 本或 2 本以上的本子,则作业本的数量应该是比学生数多1,即 52+1=53 本,据此即可解答11C 解析:C 【解析】【解答】解:根据分析可得,3+1=4(个);答:要摸出的球一定有2 个同色的,最少要摸4 个故选:C【分析】把3 种不同颜色看作3 个抽屉,把3 种不同颜色的球看作元素,从最不利情况考虑,每个抽屉先放1 个球,共需要3 个,再取出1 个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出:3+1=4(个),据此解答12C 解析:C 【解析】【解答】解:104=2(个)2人;2+1=3(人);故选:C【分析】10 个孩子分进4 个班,这里把班级个数
11、看作“抽屉”,把孩子的个数看作“物体个数”,104=2(个)2人;所以至少有一个班分到的学生人数不少于2+1=3(人);二、填空题13【解析】【解答】解:133 4(本)1(本)4+15(本)故答案为:5【分析】从最坏的情况考虑假如每个抽屉各放4 本数则剩下的1 本无论放在哪个抽屉里总有一个抽屉至少放进5 本书解析:【解析】【解答】解:133 4(本)1(本),4+1 5(本)。故答案为:5。【分析】从最坏的情况考虑,假如每个抽屉各放4 本数,则剩下的1 本无论放在哪个抽屉里,总有一个抽屉至少放进5 本书。14【解析】【解答】5+1=6(张)故答案为:6【分析】10 张卡片 5 张奇数 5张偶
12、数考虑最不利原则抽出的5 张都是奇数那么只要在抽一张就能保证既有偶数又有奇数解析:【解析】【解答】5+1=6(张)。故答案为:6.【分析】10 张卡片,5 张奇数 5 张偶数,考虑最不利原则,抽出的5 张都是奇数,那么只要在抽一张,就能保证既有偶数又有奇数。15【解析】【解答】在3 个墙面上涂上甲乙丙3 种颜色没有重复但第4 面墙只能选甲乙丙中的一种至1 少有两面的颜色是一致的;所以得出颜料的种数是3 种故答案为:3【分析】本题可以用抽屉原理的最不利原则考虑解析:【解析】【解答】在3 个墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至1 少有两面的颜色是一致的
13、;所以得出颜料的种数是3种。故答案为:3.【分析】本题可以用抽屉原理的最不利原则考虑。16【解析】【解答】3+1=4(个)故答案为:4【分析】此题主要考查了抽屉原理的应用假设3 种玩具分别是 ABC任意拿两件不同种类的玩具有三种情况:ABACBC 如果只有 3 个小朋友可能拿的是3 种不同的玩具如果解析:【解析】【解答】3+1=4(个).故答案为:4.【分析】此题主要考查了抽屉原理的应用,假设3 种玩具分别是A、B、C,任意拿两件不同种类的玩具,有三种情况:AB、AC、BC,如果只有3 个小朋友,可能拿的是3 种不同的玩具,如果再来1 人,一定会出现有2 个小朋友拿的玩具相同,据此解答.17【
14、解析】【解答】6+5+1=11+1=12(个)故答案为:12【分析】此题考查了抽屉原理的应用要考虑最差情况:因为袋子里装有4 个红球 5 个黄球和 6 个绿球假设先摸出 6 个球可能都是绿球再摸5 个球可能都是黄解析:【解析】【解答】6+5+1=11+1=12(个)故答案为:12.【分析】此题考查了抽屉原理的应用,要考虑最差情况:因为袋子里装有4 个红球,5 个黄球和 6 个绿球,假设先摸出6 个球,可能都是绿球,再摸5 个球,可能都是黄球,一共摸了 11 个球,出现了两种颜色,那么再摸一个球,一定会是第三种颜色,据此解答.18【解析】【解答】解:104=2 22+1=3(颗)总有一个小朋友至
15、少分到3 颗糖果故答案为:3【分析】假如每个小朋友各分2 个苹果那么余下的苹果无论分给哪个小朋友总有一个小朋友至少分到3 颗糖果解析:【解析】【解答】解:104=22,2+1=3(颗),总有一个小朋友至少分到3 颗糖果.故答案为:3【分析】假如每个小朋友各分2 个苹果,那么余下的苹果无论分给哪个小朋友,总有一个小朋友至少分到3 颗糖果.19【解析】【解答】解:1512=1 31+1=2(名)至少有 2 名游客的生日是同一个月的故答案为:2【分析】假如每个月都有一个游客生日那么余下的游客无论在哪个月出生都至少有2 名游客的生日是同一个月的解析:【解析】【解答】解:1512=13,1+1=2(名)
16、,至少有2 名游客的生日是同一个月的.故答案为:2【分析】假如每个月都有一个游客生日,那么余下的游客无论在哪个月出生都至少有 2 名游客的生日是同一个月的.205【解析】【解答】因为是红黄蓝白四种颜色那么抓的前4 个球就有可能分别是这 4 种球只有到第5 个球颜色才能重复故填5【分析】可能性表示的是事情出现的概率前 4 次抓到什么颜色球的可能性都有我们要从中考虑到抓到解析:5【解析】【解答】因为是红、黄、蓝、白四种颜色,那么抓的前4 个球就有可能分别是这4 种球,只有到第5 个球颜色才能重复故填 5【分析】可能性表示的是事情出现的概率,前4 次抓到什么颜色球的可能性都有,我们要从中考虑到抓到不
17、同颜色的最大可能三、解答题21(1)解:4+1=5(人)答:至少 5 人报名参加滑板街道赛,可以保证有两人来自同一个国家。(2)解:7+1=8(人)答:至少有8 人参加极限单车比赛,可以保证有来自两个国家的运动员。【解析】【分析】(1)考虑最不利原则,4 个国家各有1 名运动员报滑板街道赛,第5 名运动员不管是哪个国家,只要报名,就能保证有两人来自同一个国家;(2)考虑最不利原则,一个国家的7 名运动员全部参加极限单车比赛,那么第8 名肯定是不同的国家,只要报名,就可以保证有来自两个国家的运动员。22 解:426 5=85(分)1(分)85+1=86(分)答:总有一名同学的得分不低于86 分。
18、【解析】【分析】考虑最不利原则,5 名同学都得了85 分,共 425 分,少的那一分不管是哪个同学得的,总有一名同学的得分不低于86 分。23解:当抽出个奇数的时候,乘积还是奇数,最多再抽出张偶数,乘积即可被整除,也就是抽出个数可以保证乘积能被整除【解析】【分析】根据奇偶性,奇数 奇数=奇数,偶数 偶数=偶数,奇数 偶数=偶数,奇数一定不能被4 整除,偶数 偶数一定能被4 整除。1100 中有 50 个奇数,考虑“最坏”的情况,50 个奇数全部被抽出,乘积依旧是奇数,那么最多再抽出2 张偶数,此时乘积就能被整除。24 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(
19、Q)、13(K)的牌各取1 张,再取大王、小王各1 张,一共15 张,这15 张牌中,没有两张的点数相同这样,如果任意再取1 张的话,它的点数必为113 中的一个,于是有2 张点数相同【解析】【分析】考虑“最坏”的情况,抽出两张王牌和其中一个花色的全部,再加上1 即可。25(1)解:13114(张)答:至少取14 张牌,保证有2 张牌的点数相同。(2)解:415(张)答:至少取5 张牌,保证有2 张牌的点数不同。(3)解:133 241(张)答:至少取41 张牌,保证有2 张红桃。【解析】【分析】(1)一副扑克牌54 张,从扑克牌中取出两张王牌,剩下的52 张牌分四种花色,每种花色的有524=
20、13张,如果要保证有2 张牌的点数相同,只需要比一种花色的总张数多1 张就可以,据此解答;(2)同一种点数的扑克牌有4 种花色,一共是4 张,多取1 张,一定会出现不同点数的牌,据此解答;(3)一副扑克牌54 张,从扑克牌中取出两张王牌,剩下的52 张牌分四种花色,每种花色的有524=13张,要求保证有2 张红桃,考虑最差情况:先将其他三种颜色的牌取完,一共要取 133=39张,然后再取2 张,一定是红桃,据此解答.26 解:先将一种颜色的8 根取尽,余下的两种颜色各取1 根,再任取1 根,就能保证取出颜色不同的两双筷子了。82111(根)答:至少取11 根筷子才能保证达到要求。【解析】【分析】此题主要考查了抽屉原理的应用,根据题意,先将一种颜色的8 根取尽,余下的两种颜色各取1 根,再任取1 根,就能保证取出颜色不同的两双筷子了,据此列式解答.