《(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)测试卷(答案解析).pdf》由会员分享,可在线阅读,更多相关《(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)测试卷(答案解析).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(常考题)最新人教版小学数学六年级下册第五单元数学广角(鸽巢问题)测试卷(答案解析)一、选择题1启航学校的学生中,最大的12 岁,最小的6 岁,最多从中挑选()名学生,就一定能找到年龄相同的两名同学。A.8 B.13 C.72六(1)班有42 名学生,男、女生人数比为1:1,至少任意选取()人,才能保证男、女生都有。A.3 B.2 C.10 D.22314 个同学中,一定有()人是在同一个月出生的。A.2 B.3 C.44袋中有60 粒大小相同的弹珠,每15 粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出()粒才行。A.4 B.5 C.6 D.75把红、黄、蓝三种颜色的球各5
2、 个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球A.4 B.5 C.66黑桃和红桃扑克牌各5 张,要想抽出3 张同类的牌,至少要抽出()张A.3 B.5 C.6 D.87把红、黄、蓝、白四种颜色的球各8 个放到一个袋子里,至少要取()个球,才可以保证取到三个颜色相同的球A.9 B.8 C.5 D.138把 7 只鸡放进3 个鸡笼里,至少有()只鸡要放进同一个鸡笼里A.2 B.3 C.49口袋里放有红、黄、白三种颜色的同样的钮扣各10 枚,至少取出()枚钮扣,才能保证三种颜色的钮扣都取到A.13 B.21 C.3010把()种颜色的球各8 个放在一个盒子里,至少取出4 个球,可以保
3、证取到两个颜色相同的球A.1 B.2 C.3 D.411把白、黑、红、绿四种颜色的球各5 个放在一个盒子里,至少取出()个球就可以保证取出两个颜色相同的球A.3 B.5 C.612把 56 个苹果装在9 个袋子里,有一个袋子至少装()个苹果A.5 B.6 C.7二、填空题13某小区 2019 年共新增加了13 辆电动清洁能源小客车,一定有_辆或 _辆以上的小客车是在同一个月内购买的。14在每个格子中任意画上符号“”和“”,则下面9 列中,至少有 _列的符号是完全一样的。15一副扑克牌共54 张,其中点各有4 张,还有两张王牌,至少要取出_张牌,才能保证其中必有4 张牌的点数相同。16把 15
4、个学生分到6 个组,总有一个组至少有_人。17有黄、红两种颜色的球各4 个,放到同一个盒子里,至少取_个球可以保证取到 2 个颜色相同的球。18有红、黄、蓝、绿四种颜色的球各10 个,要保证取出的球有两个是同色的,至少要取出_个球;要保证取出的球有两个是不同色的,至少要取出_个球。19把红、黄、蓝三种颜色的小珠子各4 颗混合后放到口袋里,为了保证一次能取到2 颗颜色相同的珠子,则一次至少取_颗。20从 7 个抽屉中拿出22 个苹果,无论怎样拿,总有一个抽屉中至少拿出了_个苹果。三、解答题21储蓄罐里有同样大小的金币和铜币各5 枚。要想摸出的钱币中一定有3 枚相同,最少要摸出几枚钱币?22从 1
5、3 个连续的自然数中,一定可以找到两个数,它们的差是12 的倍数。任意取多少个连续的自然数,才能保证至少有两个自然数的差是7 的倍数?23将 400 本书随意分给若干同学,但是每个人不许超过11 本,问:至少有多少个同学分到的书的本数相同?24 在的方格纸中,每个方格纸内可以填上四个自然数中的任意一个,填满后对每个“田”字形内的四个数字求和,在这些和中,相同的和至少有几个?25 如图,能否在行列的方格表的每一个空格中分别填上,这三个数,使得各行各列及对角线上个数的和互不相同?并说明理由26 将每一个小方格涂上红色、黄色或蓝色(每一列的三小格涂的颜色不相同),不论如何涂色,其中至少有两列,它们的
6、涂色方式相同,你同意吗?【参考答案】*试卷处理标记,请不要删除一、选择题1A 解析:A 【解析】【解答】7+1=8(名)。故答案为:A。【分析】6、7、8、9、10、11、12,一共 7 个年龄段,在从中挑选1 名学生,就一定能找到年龄相同的两名同学。2D 解析:D 【解析】【解答】422+1=21+1=22(人)。故答案为:D。【分析】男、女生人数比为1:1,意思是男女生人数一样,考虑最不利原则,选的前21人都是男生,那么再选一人,肯定是女生,所以至少任意选取22 人,才能保证男、女生都有。3A 解析:A 【解析】【解答】1412=1(个)2(个),至少:1+1=2(个).故答案为:A.【分
7、析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.4B 解析:B 【解析】【解答】解:6015=4(种),4+1=5(粒)故答案为:B【分析】用60 除以 15 求出一共有4 种颜色,如果4 种颜色各取出1 粒,那么再取出1 粒无论是什么颜色都能保证有2 粒颜色相同,所以至少取出5 粒才行.5A 解析:A 【解析】【解答】解:3+1=4(个);答:至少取4 个球,可以保证取到两个颜色相同的球故选:A【分析】由于袋子里共有红、黄、蓝三种颜色的球各5 个,如果一次取三个,最差情况为红、黄、蓝三种颜色各一个,所以只要再多取一个球,就能保证取
8、到两个颜色相同的球即 3+1=4 个6B 解析:B 【解析】【解答】解:22+1=5(张)答:至少要抽出5 张故选:B【分析】从最极端情况进行分析:抽出的4 张,两种颜色各有2 张,这时再任取一张,即可保证有抽出3 张同类的牌7A 解析:A 【解析】【解答】解:42+1=9(个);答:从中至少取出9 个球,可以保证取到三个颜色相同的球故选:A【分析】由于袋子里共有红、黄、蓝、白四种颜色的球各8 个,考虑最差情况:前8 个球摸出的是每种颜色各2 个,所以只要再多取一个球,就能保证取到3 个颜色相同的球8B 解析:B 【解析】【解答】解:73=2(只)1只,2+1=3(只)答:至少有3 只鸡要放进
9、同一个鸡笼里故选:B【分析】把7 只鸡放进3 个鸡笼里,73=2(只)1只,当每个笼子放进2 只后,还有一只没有进笼,所以至少有一只笼子里要放进2+1=3 只鸡9B 解析:B 【解析】【解答】解:10+10+1=21(个)答:至少取出21 枚钮扣,才能保证三种颜色的钮扣都取到故选:B【分析】口袋里放有红、黄、白三种颜色的同样的钮扣,最差的情况是头10 个都是同一种颜色的比如红的,此时还剩下黄、白两种颜色的,接着拿了10 个还是同一种颜色的,比如黄的,此时口袋内只剩下白色的了,最后再拿一个,三种颜色的钮扣都取到了,即至少要取出 10+10+1=21 个10C 解析:C 【解析】【解答】解:由于至
10、少取出4 个球,可以保证取到两个颜色相同的球所以,盒子应有41=3 种不同颜色的球,最差情况是,拿出三个球是不同的三种颜色,则只要再拿出一个球,就能保证保证取到两个颜色相同的球故选:C【分析】根据题意义可知,至少取出4 个球,可以保证取到两个颜色相同的球根据抽屉原理可知,盒子应有3 种不同颜色的球,即最差情况是,拿出三个球是不同的三种颜色,则只要再拿出一个球,就能保证保证取到两个颜色相同的球11B 解析:B 【解析】【解答】解:保证取到两个颜色相同的球的次数是:4+1=5(次),到少取 5 个球,保证取到两个颜色相同的球故选:B【分析】考虑到最差情况是摸4 次摸到的是白、黑、红、绿四种颜色的球
11、各一个,只要再摸一次,就可以保证摸到球是两个颜色相同的球据此解答12C 解析:C 【解析】【解答】解:569=6(个)2(个)6+1=7(个)答:有一个袋子至少装7 个苹果故选:C【分析】把56 个苹果装在9 个袋子里,将这9 个袋子当做9 个抽屉,569=6个 2个,即平均每个袋子里装6 个后,还余下2 个根据抽屉原理可知,总有一个袋子至少要装6+1=7 个,据此即可判断二、填空题132;2【解析】【解答】1312=11(辆)1(辆);1+1=2(辆)故答案为:2;2【分析】假设一个月买一辆一年买了12 辆还余下一辆不管这一辆是哪个月购买的一年一定有2 辆或 2 辆以上的小客车是在解析:2;
12、2 【解析】【解答】1312=11(辆)1(辆);1+1=2(辆)。故答案为:2;2.【分析】假设一个月买一辆,一年买了12 辆还余下一辆,不管这一辆是哪个月购买的,一年一定有2 辆或 2 辆以上的小客车是在同一个月内购买的。14【解析】【解答】94=2(轮)1(列);2+1=3(列)故答案为:3【分析】因为每列的填写的只能是下列4 种之一:一共有 9 列考虑最差的情况先把4 种不同的方法填写2 遍最后还剩下 1 列这一解析:【解析】【解答】94=2(轮).1(列);2+1=3(列)。故答案为:3。【分析】因为每列的填写的只能是下列4 种之一:、,一共有9 列,考虑最差的情况,先把4 种不同的
13、方法填写2 遍,最后还剩下1 列,这一列无论是哪种方法,都会使得有3 列的符号是完全一样的。15【解析】【解答】解:由于313+2+1=42 取出 42 张牌其中必有 4 张点数相同如果只取 41 张那么其中可能有3 张 A3 张 23 张 33张 K 及两张王牌没有4张一样的点数相同所以至少要取42 张才能保证其中必有解析:【解析】【解答】解:由于313+2+1=42,取出 42 张牌,其中必有4 张点数相同。如果只取41 张,那么其中可能有3 张 A,3 张 2,3 张 3,3 张 K 及两张王牌,没有4张一样的点数相同。所以,至少要取42 张,才能保证其中必有4 张牌的点数相同。故答案为
14、:42。【分析】考虑“最坏”的情况,抽出两张王牌和每个点数各3 张,再加上1 即可。16【解析】【解答】156=23;2+1=3(人)故答案为:3【分析】把15 个学生分到 6 个组用抽屉原理来说就是把15 个物体放到 6 个抽屉里物体数 抽屉数=商余数则至少有一个抽屉里有:商+1个物体解析:【解析】【解答】156=2.3;2+1=3(人)故答案为:3.【分析】把15 个学生分到6 个组,用抽屉原理来说就是把15 个物体放到6 个抽屉里。物体数 抽屉数=商.余数,则至少有一个抽屉里有:商+1 个物体。17【解析】【解答】解:有红黄两种颜色的球个4 个放到同一个盒子里至少取 3 个球可以保证取到
15、2 个颜色相同的球故答案为:3【分析】从最坏的情况考虑假设先摸出的两个球一个黄色一个红色那么再摸出一个无论是什么颜色解析:【解析】【解答】解:有红黄两种颜色的球个4 个,放到同一个盒子里,至少取3个球可以保证取到2 个颜色相同的球。故答案为:3。【分析】从最坏的情况考虑,假设先摸出的两个球一个黄色,一个红色,那么再摸出一个无论是什么颜色都能保证取出2 个颜色相同的球。185;11【解析】【解答】4+1=5(个);10+1=11(个)故答案为:5;11【分析】根据抽屉原理分析最坏的情况即可得出结论解析:5;11【解析】【解答】4+1=5(个);10+1=11(个)故答案为:5;11。【分析】根据
16、抽屉原理,分析最坏的情况即可得出结论。19【解析】【解答】3+1=4(颗)故答案为:4【分析】此题主要考查了抽屉原理的应用根据条件可知一共有3 种颜色的小珠子如果一次取3 颗可能每种颜色的各取一颗如果再多取一颗珠子一定会出现2 颗颜色相同的珠子据解析:【解析】【解答】3+1=4(颗)故答案为:4.【分析】此题主要考查了抽屉原理的应用,根据条件可知,一共有3 种颜色的小珠子,如果一次取3 颗,可能每种颜色的各取一颗,如果再多取一颗珠子,一定会出现2 颗颜色相同的珠子,据此解答.20【解析】【解答】227=3(个)1(个)至少:3+1=4(个)故答案为:4【分析】抽屉原理的公式:a 个物体放入 n
17、 个抽屉如果 an=bc那么有一个抽屉至少放(b+1)个物体据此解答解析:【解析】【解答】227=3(个)1(个),至少:3+1=4(个).故答案为:4.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.三、解答题21 解:2 2+1=5(枚)答;最少要摸出5 枚钱币。【解析】【分析】考虑最不利原则,前4 次摸到金币和铜币各2 枚,第 5 次不管摸到哪种钱币,都能保证摸出的钱币中一定有3 枚相同。22 解:自然数除以7 的余数为:0、1、2、3、4、5、6,因此7 就把自然数分成了7类,即:除以7 余 0、1、2、3、4、5、6,
18、因此,可以把它看成是7 个抽屉,至少要有8个数,才能必然有一个抽屉里有两个数,而这两个数除以7 的余数相同,也就是差是7 的倍数,答:根据上述分析,至少任意取8 个连续的自然数,就能保证其中必有两个数,它们的差是 7 的倍数。【解析】【分析】两个自然数的差是7 的倍数,7 的最小倍数还是7,所以至少要有8 个数,最大的数减去最小的数差是7,就能保证至少有两个自然数的差是7 的倍数。23 解:每人不许超过11 本,最“坏”的情况是每人得到的本数尽量不相同,为:1、2、3、4、5、6、7、8、9、10、11这11种 各 不 相 同 的 本 数,共 有:本,最不利的分法是:得1、2、3、4、5、6、
19、7、8、9、10、11 本数+的各 6 人,还剩4 本书,要使每个人不超过11 本,无论发给谁,都会使至少有7 人得到书的本书相同【解析】【分析】每个人不许超过11 本,从 1 开始一直加到11,得 66,然后用书的总本数除以66,如果有余数,那么分到相同本数的同学至少有的人数就是将所得的商加1 即可;如果没有余数,那么分到相同本数的同学至少有的人数就是所得的商。24 解:先计算出在的方格中,共有“田”字形:(个),在中任取4 个数(可以重复)的和可以是中之一,共13 种可能,根据抽屉原理:,至少有个“田”字形内的数字和是相同的【解析】【分析】先求出一共有“田”字形的个数,因为用到的是14 这
20、四个数的和,所以在 22 的方格中,4 个数字的和最小是4,最大是16,从 4 到 16 一共有 13 个数字,相当于 13 个抽屉,然后根据抽屉原理作答即可。25 解:从问题入手:因为问的是和,所以就从和的种类入手。由,组成的和中最小为,最大的为,中共有种结果,而行列加上对角线共有个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求【解析】【分析】因为用到的是这三个数的和,所以8 个数字的和最小是8,最大是24,从 8 到 24 一共有 17 个数字,根据抽屉原理,不能满足要求。26 解:这道题是例题的拓展提高,通过列举我们发现给这些方格涂色,要使每列的颜色不同,最多有种不同的涂法,涂到第六列以后,就会跟前面的重复所以不论如何涂色,其中至少有两列它们的涂色方式相同【解析】【分析】用红、黄或蓝三种颜色给每列中三个小方格随意涂色,可能出现的情况有:红、蓝、黄;红、黄、蓝;蓝、红、黄;蓝、黄、红;黄、红、蓝;黄、蓝,红一种6 种,将这6 种情况看成“抽屉”,将题目中所给小方格的列数看成“苹果”,然后根据抽屉原理作答即可。