《(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(答案解析)(2).pdf》由会员分享,可在线阅读,更多相关《(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(答案解析)(2).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(答案解析)(2)一、选择题1任意 5 个自然数的和是偶数,则其中至少有()个偶数。A.1 B.2 C.32口袋里有红、黄、蓝三种颜色的小球各3 个,一次至少取出()个,才能保证取出的小球一定有3 个球的颜色相同。A.3 B.5 C.7 D.935 只小鸡被装进2 个鸡笼,总有一个鸡笼至少有()只小鸡。A.2 B.3 C.4414 个同学中,一定有()人是在同一个月出生的。A.2 B.3 C.45在任意的37 个人中,至少有()人属于同一种属相A.3 B.4 C.5 D.26黑桃和红桃扑克牌各5 张,要想抽出3 张同类的牌,至少要抽
2、出()张A.3 B.5 C.6 D.87李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,颜料的颜色种数是()种A.2 B.3 C.4 D.58王东玩掷骰子游戏,要保证掷出的骰子总数至少有两次相同,他最少应掷()次A.5 B.6 C.7 D.89把白、黑、红、绿四种颜色的球各5 个放在一个盒子里,至少取出()个球就可以保证取出两个颜色相同的球A.3 B.5 C.610王老师把 36 根跳绳分给5 个班,至少有()根跳绳分给同一个班A.7 B.8 C.911将 6 个苹果放在3 个盘子里,至少有()个苹果放在同一个盘子里A.2 B.3 C.61245 个球最多放在()个盒
3、子里,才能保证至少有一个盒子里7 个球A.8 B.7 C.9 D.10二、填空题1313 本书放进3 个抽屉,不管怎么放,总有一个抽屉至少放进_本书14在每个格子中任意画上符号“”和“”,则下面9 列中,至少有 _列的符号是完全一样的。15 李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的。李叔叔的颜料最多有_种颜色。16从一副扑克牌(54 张)中抽出 _张来,才能保证一定有一张是黑桃。17(第六届小数报数学竞赛初赛)有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25 根。在黑暗中至少应摸出_根筷子,才能保证摸出的筷子至少有8 双(每两根花
4、筷子或两根同色的筷子为一双)。18把红、黄、蓝三种颜色的小珠子各4 颗混合后放到口袋里,为了保证一次能取到2 颗颜色相同的珠子,则一次至少取_颗。199 只鸽子飞回4 个笼子至少有_只鸽子要飞进同一个笼子。20在 2 个盒子里放入11 块橡皮,总有一个盒子里至少放进_块橡皮。三、解答题21在一次世界极限运动会中,意大利、法国、美国、加拿大分别有7 名运动员参赛。(1)至少几人报名参加滑板街道赛,可以保证有两人来自同一个国家?(2)至少有几人参加极限单车比赛,可以保证有来自两个国家的运动员?22 在米长的水泥阳台上放盆花,随便怎样摆放,至少有几盆花之间的距离不超过米23 在边长为的正方形内任意放
5、入九个点,求证:存在三个点,以这三个点为顶点的三角形的面积不超过。24从 1,2,3,99,100 这 100 个数中任意选出51 个数证明:(1)在这 51 个数中,一定有两个数互质;(2)在这 51 个数中,一定有两个数的差等于50;(3)在这 51 个数中,一定存在9 个数,它们的最大公约数大于125把 125 本书分给五班的学生,如果其中至少有一个人分到至少4 本书,那么,这个班最多有多少人?26把 25 个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里至少有5 个玻璃球?【参考答案】*试卷处理标记,请不要删除一、选择题1A 解析:A 【解析】【解答】1 个偶数+4 个奇数=偶数;
6、3 个偶数+2 个奇数=偶数;5 个偶数的和还是偶数;任意 5 个自然数的和是偶数,则其中至少有1 个偶数。故答案为:A。【分析】偶数+偶数=偶数,偶数+奇数=奇数,据此分析。2C 解析:C 【解析】【解答】解:32+1=7(个)故答案为:C。【分析】假设取出的前6 个球分别是2 个红球,2 个黄球,2 个蓝球,那么再取出1 个无论是什么颜色都能保证取出的小球一定有3 个球的颜色相同。3B 解析:B 【解析】【解答】52=2(只)1(只),至少:2+1=3(只).故答案为:B.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.4A
7、 解析:A 【解析】【解答】1412=1(个)2(个),至少:1+1=2(个).故答案为:A.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.5B 解析:B 【解析】【解答】解:3712=313+1=4(人)答:至少有4 人的属相相同故选:B【分析】把12 个属相看做12 个抽屉,37 人看做37 个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答6B 解析:B 【解析】【解答】解:22+1=5(张)答:至少要抽出5 张故选:B【分析】从最极端情况进行分析:抽出的4 张,两种颜色各有2
8、 张,这时再任取一张,即可保证有抽出3 张同类的牌7B 解析:B 【解析】【解答】解:4 1=3(种);故答案应选:B【分析】本题可以用抽屉原理的最不利原则;故意在3 个墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至少有两面的颜色是一致的;所以得出颜料的种数是3 种8C 解析:C 【解析】【解答】解:6+1=7(次);故答案为:C【分析】骰子能掷出的结果只有6 种,掷 7 次的话必有2 次相同;即把骰子的出现的六种情况看作“抽屉”,把掷出的次数看作“物体的个数”,要保证至少有两次相同,那么物体个数应比抽屉数至少多1;进行解答即可9B 解析:B 【解析】【解答
9、】解:保证取到两个颜色相同的球的次数是:4+1=5(次),到少取 5 个球,保证取到两个颜色相同的球故选:B【分析】考虑到最差情况是摸4 次摸到的是白、黑、红、绿四种颜色的球各一个,只要再摸一次,就可以保证摸到球是两个颜色相同的球据此解答10B 解析:B 【解析】【解答】解:365=7(根)1(根)7+1=8(根)答:至少有8 根跳绳分给同一个班故选:B【分析】把5 个班看作5 个抽屉,把36 根跳绳看作36 个元素,从最不利情况考虑,每个抽屉先放7 根,共需要35 根,余这一根跳绳无论放在那个抽屉里,总有一个抽屉里的有7+1=8(根),据此解答11A 解析:A 【解析】【解答】解:63=2(
10、个)答:至少有2 个苹果放在同一个盘子里故选:A【分析】将6 个苹果放在3 个盘子里,至少有63=2个苹果放在同一个盘子里,据此解答即可12B 解析:B 【解析】【解答】解:45(71)=7(个盒子)3(个球),答:把 45 个球最多放进7 个盒子,才能保证至少有一个盒子里有7 个球故选:B【分析】把需要的盒子看做抽屉;根据“至少有一个盒子里有7 个球”,从最不利的情况去考虑,假设只有一个盒子里有7 个球;那么每个盒子先放6(71)个,需要的盒子数是:456=7(个)3(个),那么还剩的3 个球,在三个盒子中分别放一个,都能保证至少有一个盒子里有7 个球,则可以得出最多放进7 个盒 子二、填空
11、题13【解析】【解答】解:133 4(本)1(本)4+15(本)故答案为:5【分析】从最坏的情况考虑假如每个抽屉各放4 本数则剩下的1 本无论放在哪个抽屉里总有一个抽屉至少放进5 本书解析:【解析】【解答】解:133 4(本)1(本),4+1 5(本)。故答案为:5。【分析】从最坏的情况考虑,假如每个抽屉各放4 本数,则剩下的1 本无论放在哪个抽屉里,总有一个抽屉至少放进5 本书。14【解析】【解答】94=2(轮)1(列);2+1=3(列)故答案为:3【分析】因为每列的填写的只能是下列4 种之一:一共有 9 列考虑最差的情况先把4 种不同的方法填写2 遍最后还剩下 1 列这一解析:【解析】【解
12、答】94=2(轮).1(列);2+1=3(列)。故答案为:3。【分析】因为每列的填写的只能是下列4 种之一:、,一共有9 列,考虑最差的情况,先把4 种不同的方法填写2 遍,最后还剩下1 列,这一列无论是哪种方法,都会使得有3 列的符号是完全一样的。15【解析】【解答】在3 个墙面上涂上甲乙丙3 种颜色没有重复但第4 面墙只能选甲乙丙中的一种至1 少有两面的颜色是一致的;所以得出颜料的种数是3 种故答案为:3【分析】本题可以用抽屉原理的最不利原则考虑解析:【解析】【解答】在3 个墙面上涂上甲、乙、丙3 种颜色,没有重复,但第4 面墙只能选甲、乙、丙中的一种,至1 少有两面的颜色是一致的;所以得
13、出颜料的种数是3种。故答案为:3.【分析】本题可以用抽屉原理的最不利原则考虑。16【解析】【解答】133+1+2=42(张)故答案为:42【分析】一副扑克牌4种花色加两个王抽出红桃方块梅花各13 张在加上 2 张大小王后只剩下黑桃了最后在抽一张黑桃就能保证一定有一张是黑桃解析:【解析】【解答】133+1+2=42(张)。故答案为:42.【分析】一副扑克牌4 种花色加两个王,抽出红桃,方块,梅花各13 张,在加上2 张大小王后,只剩下黑桃了,最后在抽一张黑桃,就能保证一定有一张是黑桃。17【解析】【解答】解:因为筷子只有6 种所以 7 根中必有一双颜色相同我们取出其中一双这样剩下5 根筷子为了再
14、能取一双颜色相同的筷子根据最不利原则需再加两只筷子才能保证再摸出一双颜色相同的筷子以此类推所以要8 解析:【解析】【解答】解:因为筷子只有6 种,所以7 根中必有一双颜色相同。我们取出其中一双,这样剩下5 根筷子,为了再能取一双颜色相同的筷子,根据最不利原则,需再加两只筷子才能保证再摸出一双颜色相同的筷子,以此类推,所以要8 双颜色相同的筷子需 7+2(8-1)=21 根筷子。故答案为:21。【分析】因为有六种颜色,那么7 根中必有一双颜色相同,将其中的一双取出后,还剩下5 双,然后再取2 根又得到一双筷子,据此作答即可。18【解析】【解答】3+1=4(颗)故答案为:4【分析】此题主要考查了抽
15、屉原理的应用根据条件可知一共有3 种颜色的小珠子如果一次取3 颗可能每种颜色的各取一颗如果再多取一颗珠子一定会出现2 颗颜色相同的珠子据解析:【解析】【解答】3+1=4(颗)故答案为:4.【分析】此题主要考查了抽屉原理的应用,根据条件可知,一共有3 种颜色的小珠子,如果一次取3 颗,可能每种颜色的各取一颗,如果再多取一颗珠子,一定会出现2 颗颜色相同的珠子,据此解答.19【解析】【解答】解:94=2 12+1=3至少有 3 只鸽子要飞进同一个笼子故答案为:3【分析】假如每个笼子里都飞进2 只鸽子那么余下的1 只无论飞进哪个笼子都至少有3 只鸽子要飞进同一个笼子解析:【解析】【解答】解:94=2
16、1,2+1=3,至少有3 只鸽子要飞进同一个笼子.故答案为:3【分析】假如每个笼子里都飞进2 只鸽子,那么余下的1 只无论飞进哪个笼子都至少有3只鸽子要飞进同一个笼子.20【解析】【解答】解:112=5 15+1=6(块)总有一个盒子里至少放进6 块橡皮故答案为:6【分析】假如每个盒子里各放入5 块橡皮那么余下的1 块无论放进哪个盒子里都有一个盒子至少放进6 块橡皮解析:【解析】【解答】解:112=51,5+1=6(块),总有一个盒子里至少放进6 块橡皮.故答案为:6【分析】假如每个盒子里各放入5 块橡皮,那么余下的1 块无论放进哪个盒子里都有一个盒子至少放进6 块橡皮.三、解答题21(1)解
17、:4+1=5(人)答:至少 5 人报名参加滑板街道赛,可以保证有两人来自同一个国家。(2)解:7+1=8(人)答:至少有8 人参加极限单车比赛,可以保证有来自两个国家的运动员。【解析】【分析】(1)考虑最不利原则,4 个国家各有1 名运动员报滑板街道赛,第5 名运动员不管是哪个国家,只要报名,就能保证有两人来自同一个国家;(2)考虑最不利原则,一个国家的7 名运动员全部参加极限单车比赛,那么第8 名肯定是不同的国家,只要报名,就可以保证有来自两个国家的运动员。22 解:如果每两盆之间的距离都超过米,那么总距离超过(米)另一方面,可以使开始的盆每两盆之间距离略大于2 米,而最后两盆之间小于2 米
18、所以,至少有两盆之间的距离不超过2 米【解析】【分析】在20 米长的水泥阳台上等距离放10 盆花,每盆花之间的距离是2 米,那么放 11 盆花时,至少有两盆花之间的距离不超过2 米。23 解:如图,用个点四等分正方形,得到四个面积都为的正方形,我们把四个面积为的正方形看成个抽屉,个点看成苹果,因此必有三个点在一个面积为的正方形内,如果这三点恰好是正方形的顶点,则三角形的面积为,如果这三点在正方形内部,则三角形的面积小于,因此存在三个点,以这三个点为顶点的三角形的面积不超过。【解析】【分析】将边长为1 的正方形等分为4 个小正方形,每个小正方形的每条边都是0.5,根据抽屉原理,任意放入九个点,那
19、么存在三个点,以这三个点为顶点的三角形的面积不超过 0.125。24(1)解:我们将1100 分成(1,2),(3,4),(5,6),(7,8),(99,100)这 50 组,每组内的数相邻而相邻的两个自然数互质将这50 组数作为50个抽屉,同一个抽屉内的两个数互质而现在51 个数,放进50 个抽屉,则必定有两个数在同一抽屉,于是这两个数互质问题得证(2)解:我们将1100 分成(1,51),(2,52),(3,53),(40,90),(50,100)这 50 组,每组内的数相差50将这 50 组数视为抽屉,则现在有51 个数放进50 个抽屉内,则必定有2 个数在同一抽屉,那么这两个数的差为5
20、0问题得证(3)解:我们将1100 按 2 的倍数、3 的奇数倍、既不是2 又不是3 的倍数的情况分组,有(2,4,6,8,98,100),(3,9,15,21,27,93,99),(5,7,11,13,17,19,23,95,97)这三组第一、二、三组分别有50、17、33 个元素最不利的情况下,51 个数中有33 个元素在第三组,那么剩下的18 个数分到第一、二两组内,那么至少有9 个数在同一组所以这9 个数的最大公约数为2 或 3 或它们的倍数,显然大于 1问题得证【解析】【分析】(1)相邻的两个自然数互质,可以把这些数按顺序两两为一组,进行分类即可;(2)只需要将一组中的两个数作差是5
21、0,这样的数可以组50 组,那么在这51 个数中,一定有两个数的差等于50;(3)因为要选出9 个数,所以把这100 个数分组后,每组至少有9 个数字,我们可以按2 的倍数,3 的奇数倍,既不是2 的倍数又不是3 的倍数进行分组,先用50 减去既不是2的倍数又不是3 的倍数的数的个数,还剩18 个数,故至少有9 个数在前两组中的一组,得证。25 解:本题需要求抽屉的数量,需要反用抽屉原理和最“坏”情况的结合,最坏的情况是只有 1 个人分到4 本书,而其他同学都只分到3 本书,则(125-4)3=401,因此这个班最多有 40+1=41(人)。【解析】【分析】考虑最不利的情况:只有1 个人分到4 本书,而其他同学都只分到3 本书,那么先从125 本书中去掉4 本,然后再除以3,若有余数,则商加1 可得出答案;若没有余数,则求得的商即为答案。26 解:(251)(51)6(个)答:把25 个玻璃球最多放进6 个盒子里,才能保证至少有一个盒子里至少有5 个玻璃球。【解析】【分析】此题主要考查了抽屉原理的应用,根据条件“保证至少有一个盒子里至少有 5 个玻璃球”可知,其他每个抽屉放的玻璃球个数为:5-1=4 个,要求抽屉数,用(总个数-1)每个抽屉放的个数=抽屉数量,据此列式解答.