《22.3三角形的中位线 (5).ppt》由会员分享,可在线阅读,更多相关《22.3三角形的中位线 (5).ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、复习回顾复习回顾 有两组对边分别平行的四边形叫做有两组对边分别平行的四边形叫做平行四边形平行四边形.平行四边形的对边相等平行四边形的对边相等;平行四边形的对角相等平行四边形的对角相等.平行四边形的对角线互相平分。平行四边形的对角线互相平分。性质:性质:定义:定义:梳理梳理平行四边形的判定定理:平行四边形的判定定理:判定判定 1 定义:两组对边分别平行的定义:两组对边分别平行的四边形是平行四边形。四边形是平行四边形。判定判定3 两组对角分别相等的四边形两组对角分别相等的四边形是平行四边形。是平行四边形。判定判定4 两条对角线互相平分的四边两条对角线互相平分的四边形是平行四边形。形是平行四边形。判
2、定判定2 两组对边分别相等的四边形两组对边分别相等的四边形是平行四边形。是平行四边形。例例2 如图,如图,D、E分别是分别是ABC的边的边AB、AC的中点,的中点,分析:分析:要证明线段的要证明线段的倍分关系,可将倍分关系,可将DE加倍后加倍后证明与证明与BC相等。从而转化相等。从而转化为证明平行四边形的对边为证明平行四边形的对边的关系,的关系,于是可作辅助线,于是可作辅助线,利用全等三角形来证明相利用全等三角形来证明相应的边相等应的边相等.求证求证:DEBC,DEBCA 证明:证明:延长延长DE至至F,使,使EF=DE,连接,连接FC、DC、AF.AE=CE,DEBCAF四边形四边形DBCF
3、是平行四边形是平行四边形.DEBC,四边形四边形ADCF是平行四边形,是平行四边形,DEBCA 有什么有什么发现呢?发现呢?我们把连接三角形两我们把连接三角形两边中点的线段叫做三角形边中点的线段叫做三角形的的中位线中位线。由上题可得三角形中由上题可得三角形中位线定理:位线定理:三角形的中位线平行于三角形的第三角形的中位线平行于三角形的第三边,且等于第三边的一半。三边,且等于第三边的一半。ABCDE如上图,在如上图,在ABC中中 AD=BD,AE=CEDEBC归纳归纳ABCDEF一个三角形有几一个三角形有几一个三角形有几一个三角形有几条中位线?中位条中位线?中位条中位线?中位条中位线?中位线和三
4、角形的中线和三角形的中线和三角形的中线和三角形的中线一样吗?线一样吗?线一样吗?线一样吗?要把三角形的中位线与三角形的中线区要把三角形的中位线与三角形的中线区分开:分开:三角形三角形中线中线是连结一是连结一顶点顶点和它的和它的对边对边中点中点的线段,而三角形的线段,而三角形中位线中位线是连结三角形是连结三角形两边中点两边中点的线段的线段 一个三角形有一个三角形有三三条中位线。条中位线。ABCHDEFG 1、如图,在四边形如图,在四边形ABCD中,中,E,F,G,H分分别为各边的中点。求证别为各边的中点。求证:四边形四边形EFGH是平行四是平行四边形。边形。练习练习证明:证明:连接连接AC.E,
5、F,G,H分别为各边的中点分别为各边的中点,四边形四边形EFGH是平行四边形是平行四边形.EFAC,HGAC,ABCHDEFGEF GH2、四边形、四边形AEFD和和EBCF都是平行四边都是平行四边形,求证四边形形,求证四边形ABCD 是平行四边形。是平行四边形。ABCDEF你会证了吗你会证了吗你会证了吗你会证了吗?试试吧!?试试吧!?试试吧!?试试吧!平行四边形的判定:平行四边形的判定:判定判定 1 定义:两组对边分别平行的四边定义:两组对边分别平行的四边形是平行四边形。形是平行四边形。判定判定3 两组对角分别相等的四边形是平两组对角分别相等的四边形是平行四边形。行四边形。判定判定4 两条对角线互相平分的四边形是两条对角线互相平分的四边形是平行四边形。平行四边形。判定判定2 两组对边分别相等的四边形是平两组对边分别相等的四边形是平行四边形。行四边形。判定判定5 一组对边平行且相等的四边形是一组对边平行且相等的四边形是平行四边形。平行四边形。定义:定义:连接三角形两边中点的线段连接三角形两边中点的线段叫做三角形的叫做三角形的中位线中位线。三角形的中位线平行于三角形的第三角形的中位线平行于三角形的第三边,且等于第三边的一半。三边,且等于第三边的一半。在在ABC中中 AD=BD,AE=CEDEBC三角形的中位线:三角形的中位线:定理:定理: