2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx

上传人:可****阿 文档编号:30701684 上传时间:2022-08-06 格式:DOCX 页数:32 大小:1.31MB
返回 下载 相关 举报
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx_第1页
第1页 / 共32页
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含详细解析).docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较2、如图,PA是的切线,切点为A,PO的延长线

2、交于点B,若,则的度数为( )A20B25C30D403、如图,中,则等于( )ABCD4、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD5、下列图形中,ABC与DEF不一定相似的是( )ABCD6、如图,点A,B,C在O上,若ACB40,则AOB的度数为()A40B45C50D807、在平面直角坐标系xOy中,已知点A(4,3),以点A为圆心,4为半径画A,则坐标原点O与A的位置关系是()A点O在A内B点O在A外C点O在A上D以上都有可能8、如图,正六边形

3、ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分图形的周长为()A2B4C2+12D4+129、矩形ABCD中,AB8,BC4,点P在边AB上,且AP3,如果P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A点B、C均在P内B点B在P上、点C在P内C点B、C均在P外D点B在P上、点C在P外10、圆O的半径为5cm,点A到圆心O的距离OA4cm,则点A与圆O的位置关系为()A点A在圆上B点A在圆内C点A在圆外D无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于

4、点、若,则图中阴影部分的面积为_(结果保留)2、若扇形的圆心角为60,半径为2,则该扇形的弧长是_(结果保留)3、16.如图,平行四边形ABCD中,ACB = 30,AC的垂直平分线分别交AC,BC,AD于点O,E,F,点P在OF上,连接AE,PA,PB.若PA = PB,现有以下结论:PAB为等边三角形;PEBAPF;PBC - PAC = 30;EA = EB + EP其中一定正确的是_(写出所有正确结论的序号) 4、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_5、如图,正六边形ABCDEF内接于O,若O的

5、周长为8,则正六边形的边长为_ 三、解答题(5小题,每小题10分,共计50分)1、已知矩形,将矩形绕点A顺时针旋转,得到矩形(1)当点E在上时,求证:;(2)当时,求a值;(3)将矩形绕点A顺时针旋转的过程中,求绕过的面积2、如图,点C是以AB为直径的半圆O上一点,且,AD平分交BC于点D,CP平分交AD于点P,(1)求证:四边形CEPF为正方形;(2)求的最大值;(3)求的最小值3、已知:为的直径,四边形为的内接四边形,分别连接、,交于点,且(1)如图1,求证:;(2)如图2,延长交的延长线于点,交于点,连接,求证:;(3)如图3,在(2)的条件下,交于点,若,求的长4、如图,在由边长为1个

6、单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上(点M,N是格点)(1)画出线段AB绕点N顺时针旋转90得到的线段(点,分别为A,B的对应点);(2)在问题(1)的旋转过程中,求线段AB扫过的面积5、(1)请画出ABC绕点B逆时针旋转90后的A1BC1(2)求出(1)中C点旋转到C1点所经过的路径长(结果保留根号和)-参考答案-一、单选题1、B【分析】连接AB,BC,根据得,再根据三角形三边关系可得结论【详解】解:连接AB,BC,如图,又 故选:B【点睛】本题考查了三角形三边关系,弧、弦的关系等知识,熟练掌握上述知识是解答本题的关键2、B【分析】

7、连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系3、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【点睛】本题考查圆周角定理,注意掌握同弧(等弧

8、)所对的圆周角是圆心角的一半4、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键5、A【分析】根据相似三角形的判定定理进行解答【详解】解:A、当EF与BC不平行时,ABC与DEF不一定相似

9、,故本选项符合题意;B、由ABC=EFC=90,ACB=EDF可以判定ABCDEF,故本选项不符合题意;C、由圆周角定理推知B=F,又由对顶角相等得到ACB=EDF,可以判定ABCDEF,故本选项不符合题意;D、由圆周角定理得到:ACB=90,所以根据ACB=CDB=90,ABC=CBD,可以判定ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了相似三角形的判定,解题时,需要熟练掌握圆周角定理和相似三角形的判定定理6、D【分析】由ACB=40,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得AOB的度数【详解】解:ACB=40,AOB=2ACB=80故

10、选:D【点睛】本题考查了圆周角定理此题比较简单,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用7、B【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当dr时,点在圆外;当d=r时,点在圆上;点在圆外;当dr时,点在圆内;来确定点与圆的位置关系【详解】解:点A(4,3),A的半径为4,点O在A外;故选:B【点睛】本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系8、D【分析】根据正多边形的外角求得内角的度数,进而根据弧长公式求得,即可求得阴影部

11、分的周长【详解】解:正六边形ABCDEF的边长为6,阴影部分图形的周长为故选D【点睛】本题考查了求弧长公式,求正多边形的内角,牢记弧长公式和正多边形的外角与内角的关系是解题的关键9、D【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案【详解】解:如图所示,连接DP,CP,四边形ABCD是矩形,A=B=90,AP=3,AB=8,BP=AB-AP=5,PB=PD,点C在圆P外,点B在圆P上,故选D【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题

12、的关键10、B【分析】根据点与圆的位置关系的判定方法进行判断【详解】解:O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,点A在O内故选:B【点睛】本题考查了点与圆的位置关系:设O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr二、填空题1、#【分析】由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和【详解】解:四边形是矩形,图中阴影部分的面积为:故答案为:【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答2、【分析】已知扇形的圆心角为,半径为2,代入弧长公式计算【详解】解

13、:依题意,n=,r=2,扇形的弧长=故答案为:【点睛】本题考查了弧长公式的运用关键是熟悉公式:扇形的弧长=3、【分析】根据等边三角形的性质、垂直平分线的性质逐项进行分析即可【详解】连接PCAC的垂直平分线分别交AC,BC,AD于点O,E,FPA=PC,EFAC,EA=ECPA=PB,PA=PB=PC点A、B、C在以P为圆心的圆上PAB为等边三角形;故正确;ACB = 30,EFAC,EA=ECPAB为等边三角形,故错误;平行四边形ABCD中ADBC,,AEF为等边三角形,即PBC - PAC = 30,故正确;AEF、PAB为等边三角形EF=EP+PF=EAEA=EB+EP,故正确;综上,一定

14、正确的是故答案为:【点睛】本题综合考查等边三角形的性质与判定、相似三角形的判定、圆周角定理、平行四边形的性质,解题的关键是根据PA=PB=PC得到点A、B、C在以P为圆心的圆上4、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30,ABC90,BAC30,BC1,AC=2BC=2,AB=, 阴影部分的面积=,故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键5、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为

15、,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键三、解答题1、(1)见解析;(2)旋转角为 60或者 300;(3)9【分析】(1)由旋转的性质及等腰三角形性质得AEBABE,由AEFBAD可得EAFABD,从而有AEBEAF,故由平行

16、线的判定即可得到结论;(2)分点G在AD的右侧和AD的左侧两种情况;均可证明GAD是等边三角形,从而问题解决;(3)由S阴影S扇形ACFS扇形ADG,分别计算出两个扇形的面积即可求得阴影部分面积【详解】(1)连接AF,由旋转可得,AEAB,EF=BC,AEF=ABC=90AEBABE,又四边形ABCD是矩形ABC=BAD=90,BC=ADEF=AD,AEF=BAD=90在AEF和BAD中 AEFBAD(SAS),EAFABD,AEBEAF,AFBD (2)如图,当GBGC时,点G在BC的垂直平分线上,分两种情况讨论:当点G在AD右侧时,取BC的中点H,连接GH交AD于M,GCGB,GHBC,四

17、边形ABHM是矩形,AMBHADAG,GM垂直平分AD,GDGADA,ADG是等边三角形,DAG60,旋转角60; 当点G在AD左侧时,同理可得ADG是等边三角形,DAG60,旋转角36060300 旋转角为 60或者 300(3)如图3,S扇形ACF25,S扇形ADG16,S阴影S扇形ACFS扇形ADG25169即阴影部分的面积为【点睛】本题考查了矩形的性质,旋转的性质,等边三角形的判定与性质,扇形面积,线段垂直平分线的判定等知识,涉及的知识点较多,灵活运用这些知识是解题的关键,(2)小问注意分类讨论2、(1)见详解;(2)2;(3)【分析】(1)由圆周角定理,得到,得到四边形CEPF为矩形

18、,再由角平分线的性质定理,得到PE=PF,即可得到结论成立;(2)过点C作CGAB,当最大时,有最大值,利用三角形的面积公式,即可求出答案;(3)设,由相似三角形的判定和性质,得到,则取最大值时,有最小值,然后求出的最大值,即可得到答案【详解】解:(1)证明:AB为直径,四边形CEPF是矩形,CP平分,四边形CEPF为正方形;(2)过点C作CGAB,如图:由可知,当最大时,有最大值,即;由三角形的面积公式,则,;的最大值是2;(3)设,PEAC,PEDACD,;同理:PFBC,PAFDAC,由+,得,即,;当x取最大值时,有最小值;AD平分,点P为ACB的内心,PE,PF为内切圆半径;作PHA

19、B,垂足为H,如图:则易得AF=AH,BE=BH,设,的最大值为;的最大值为,的最小值;【点睛】本题考查了相似三角形的判定和性质,正方形的判定和性质,角平分线的性质定理,圆周角定理,三角形的内心等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题3、(1)见解析;(2)见解析;(3)【分析】(1)根据在同圆中弦相等所对的圆周角相等证明DE/AC,再证明,即可证得结论;(2)根据三角形外角的性质可证得结论;(3)连接AB,由圆周角定理得,设,得,再证明,证明得,通过解直角三角形求出a的值和,再证明,根据相似三角形的性质可得出,根据可得结论【详解】解:(1)证明:DE/为的直径,

20、即(2)证明:是DEG的外角, (3)连接AB,如图,BD是的直径在中,设,则,由勾股定理得: 和所对的弧都是 在和中 在中, 在中, 由勾股定理得, ,在中, BHM=BED=90,HBM=EBD ,即解得,【点睛】本题考查了与圆有关的综合题,相似三角形的判定和性质以及解直角三角形等知识,解题的关键是学会添加常用辅助线,利用相似三角形解决问题,学会利用参数解决问题4、(1)见解析;(2)【分析】(1)根据旋转的性质:点B和点,点A和点到点N的距离相等,且即可;(2)线段AB扫过的面积为,由扇形面积公式计算即可【详解】(1)如图所示:(2)如图,线段AB扫过的面积=【点睛】本题考查旋转画图与扇形的面积公式,掌握不规则图形面积公式的求法是解题的关键5、(1)见解析;(2)【分析】(1)由题意分别作出点A、C绕点B逆时针旋转90后得到的对应点,再与点B首尾顺次连接即可;(2)由题意可知C点旋转到C1点所经过的路径为圆弧,进而根据弧长公式求解即可【详解】解:(1)如图所示,A1BC1即为所求(2)BC2,CBC190,C点旋转到C1点所经过的路径长为【点睛】本题主要考查作图-轴对称变换和旋转变换,解题的关键是根据轴对称变换和旋转变换得到变换后的对应点及弧长公式

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁