2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含解析).docx

上传人:知****量 文档编号:28147709 上传时间:2022-07-26 格式:DOCX 页数:25 大小:613.96KB
返回 下载 相关 举报
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含解析).docx_第1页
第1页 / 共25页
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含解析).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试题(含解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D72、下列说法正确的是( )A等弧所对的圆周角相等

2、B平分弦的直径垂直于弦C相等的圆心角所对的弧相等D过弦的中点的直线必过圆心3、如图,正方形ABCD内接于O,点P在上,则下列角中可确定大小的是()APCBBPBCCBPCDPBA4、已知O的半径为3,若PO=2,则点P与O的位置关系是( )A点P在O内B点P在O上C点P在O外D无法判断5、如图,FA、FB分别与O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若F60,FDE的周长为12,则O的半径长为()AB2C2D36、到三角形三个顶点距离相等的点是此三角形()A三条角平分线的交点B三条中线的交点C三条高的交点D三边中垂线的交点7、如图,是的直径,、是上的

3、两点,若,则( )A15B20C25D308、如图,面积为18的正方形ABCD内接于O,则O的半径为( )ABC3D9、如图,在Rt中,以点为圆心,长为半径的圆交于点,则的长是( )A1BCD210、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,点O,B的对应点分别为O,B,连接BB,则图中阴影部分的面积是_2、如图,在O中,ACBD,若AOC120,则BOD_3、若一个正多边形的边长等于它的外接

4、圆的半径,则这个正多边形是正_边形4、如图,四边形ABCD内接于O,A=105,则BOD=_5、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图,AC是O的直径,PA、PB是O的切线,切点分别是点A、B(1)如图1,若BAC25,求P的度数(2)如图2,若M是劣弧AB上一点,AMBAOB,BC2,求AP的长2、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:O.求作:O的内接等腰直角三角形ABC. 作法:如图,作直径AB;分别以点A

5、, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MBMA=MB,OA=OB,MO是AB的垂直平分线AC= AB是直径,ACB= ( ) (填写推理依据) ABC是等腰直角三角形3、如图,四边形ABCD内接于O,OC2,AC2 (1)求点O到AC的距离;(2)求ADC的度数4、如图,是的直径,为上一点,(1)求证: 是 的切线(2)若,垂足为,交于点,求证:是等腰三角形5、如图,O是四边形

6、ABCD的外接圆,AD为O的直径连结BD,若(1)求证:12(2)当AD4,BC4时,求ABD的面积-参考答案-一、单选题1、A【分析】根据点与圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键2、A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可【详解】解:A.同弧或等弧所对的圆周角相等,所以A选项正确;B.平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B选项错误;C、在同圆和等圆中,相等的圆心角所

7、对的弧相等,所对的弦相等,所以C选项错误;D.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D选项错误.故选A.【点睛】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点灵活运用相关知识成为解答本题的关键3、C【分析】由题意根据正方形的性质得到BC弧所对的圆心角为90,则BOC=90,然后根据圆周角定理进行分析求解【详解】解:连接OB、OC,如图,正方形ABCD内接于O,所对的圆心角为90,BOC=90,BPC=BOC=45故选:C【点睛】本题考查圆周角定理和正方形的性质,确定BC弧所对的圆心角为90是解题的关键4、A【分析】已知圆O的半径为r,点P到圆心

8、O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外,根据以上内容判断即可【详解】O的半径为3,若PO2,23,点P与O的位置关系是点P在O内,故选:A【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,当rd时,点P在O内,当r=d时,点P在O上,当rd时,点P在O外5、C【分析】根据切线长定理可得,、,再根据F60,可知为等边三角形,再FDE的周长为12,可得,求得,再作,即可求解【详解】解:FA、FB分别与O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,则:、,F60,为等边三角形,FDE的周长为12,即,

9、即,作,如下图:则,设,则,由勾股定理可得:,解得,故选C【点睛】此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解6、D【分析】由题意根据线段的垂直平分线上的性质,则有三角形三边中垂线的交点到三角形的三个顶点距离相等【详解】解:垂直平分线上任意一点,到线段两端点的距离相等,到三角形三个顶点的距离相等的点是三角形三边中垂线的交点故选:D【点睛】本题考查了线段的垂直平分线的性质,解题的关键是注意掌握线段的垂直平分线上的点到线段的两个端点的距离相等7、C【分析】根据圆周角定理得到BDC的度数,再根据直径所对圆周角是直角,即可得到

10、结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键8、C【分析】连接OA、OB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3【详解】解:如图,连接OA,OB,则OA=OB,四边形ABCD是正方形,是等腰直角三角形,正方形ABCD的面积是18,即:故选C【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键9、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CEAB于E,利用,求出BE,

11、根据垂径定理求出BD即可得到答案【详解】解: 在Rt中,BC=3,连接CD,过点C作CEAB于E, 解得,CB=CD,CEAB,故选:B【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键10、A【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键二、填空题1、【分析】连接,证明是含30的,根据即可求

12、解【详解】解:如图,连接,将半径为4,圆心角为120的扇形OAB绕点A逆时针旋转60,,是等边三角形,三点共线,是等边三角形又【点睛】本题考查了求扇形面积,旋转的性质,掌握旋转的性质是解题的关键2、【分析】根据圆的性质,可得OA=OB,OC=OD,证明AOCBOD,即可得答案【详解】解:由题意可知:OA=OB,OC=OD,ACBD,AOCBOD,AOC120,BOD120,故答案为:120【点睛】本题考查了圆的性质、三角形全等的判定和性质,做题的关键是证明AOCBOD3、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数【详解】解:当一个正多边形的边长与它的外接圆的半

13、径相等时,画图如下:半径与边长相等,这个三角形是等边三角形,正多边形的边数:360606,这个正多边形是正六边形故答案为:六【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键4、150【分析】先根据圆内接四边形的性质求出C的度数,再由圆周角定理即可得出结论【详解】四边形内接于,故答案为:【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键5、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点

14、共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹三、解答题1、(1);(2)【分析】(1)由题意先根据切线长定理得到PA=PB,则利用等腰三角形的性质得PAB=PBA,再根据切线的性质得,于是利用互余计算出PAB=65,然后根据三角形内角和定理计算P的度数(2)根据题意圆的内接四边形的性质得出,进而判定为等边三角形利用其性质结合勾股定理即可求出AP的长【详解】解:(1)PA、PB是的切线,AC是的直径,在中,(2)四边形ACBM内接于,又,AC为的直径,又,为等边三角形,在中,则,.【点睛】本题考查切线长定理和切线

15、的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题2、(1)见解析;(2)BC,90,直径所对的圆周角是直角【分析】(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交O于点C,D;连结AC、BC即可;(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出ACB=90即可【详解】(1)作直径AB;分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;作直线MO交O于点C,D;连接AC,BC所以ABC就是所求的等腰直角三角形.(2)证明:连接MA,MBMA=MB,OA=O

16、B,MO是AB的垂直平分线AC=BCAB是直径,ACB=90(直径所对的圆周角是直角) ABC是等腰直角三角形故答案为:BC,90,直径所对的圆周角是直角【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键3、(1);(2) .【分析】(1)连接OA,作OHAC于H,根据勾股定理的逆定理得到AOC=90,根据等腰直角三角形的性质解答; (2)根据圆周角定理求出B,根据圆内接四边形的性质计算,得到答案【详解】解:(1)连接OA,作OHAC于H, OA2+OC2=8,AC2=8, OA2+O

17、C2=AC2, AOC为等腰直角三角形, OH= AC=,即点O到AC的距离为; (2) B=AOC=45, 四边形ABCD内接于O, ADC=180-45=135【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键4、(1)证明见解析;(2)证明见解析【分析】(1)连接,为半径,直径所对的圆周角为,;由题意可知,进而可得出是的切线(2)由题意知,对顶角,故有,;进而得出是等腰三角形【详解】解:(1)证明:如图,连接是的直径 又过圆心是的切线(2)是等腰三角形【点睛】本题考察了圆周角、切线、等腰三角形等知识点解题的关键与难点在于找角与角之间相等或互余的关系5、(1)见解析;(2)【分析】(1)先证明,再根据同圆中,等弧所对的圆周角相等即可证明;(2)过O点作OEBC于点E,连接OB,由垂径定理可得BE=CE=,由勾股定理求出,即可得到【详解】解:(1),1=2;(2)过O点作OEBC于点E,连接OB,BE=CE=,AD为O的直径,OB=,【点睛】本题主要考查了垂径定理,勾股定理,同圆中等弧所对的圆周角相等,解题的关键在于能够熟练掌握圆的相关知识

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁