2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试卷(精选).docx

上传人:可**** 文档编号:46137404 上传时间:2022-09-25 格式:DOCX 页数:31 大小:1.22MB
返回 下载 相关 举报
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试卷(精选).docx_第1页
第1页 / 共31页
2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试卷(精选).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版九年级数学下册第三章-圆综合测试试卷(精选).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住,此

2、时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD2、如图,为的直径,为外一点,过作的切线,切点为,连接交于,点在右侧的半圆周上运动(不与,重合),则的大小是( )A19B38C52D763、已知正三角形外接圆半径为,这个正三角形的边长是( )ABCD4、下列叙述正确的有( )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形A0B1C2D35、如

3、图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D666、如图,菱形ABCD的顶点B,C,D均在A上,点E在弧BD上,则BED的度数为()A90B120C135D1507、如图,直径AB6的半圆,绕B点顺时针旋转30,此时点A到了点A,则图中阴影部分的面积是()ABCD38、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD9、如图,的半径为,AB是的弦,于D,交于点C,且,弦AB的长为( )ABCD10、如图,点A、B、C在O上,BAC56,则BOC的度数为( )A28B102C112D128第卷(非选择题 70分)二、填空题(5小

4、题,每小题4分,共计20分)1、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若ADB12,则该正多边形的边数为 _2、如图,正方形ABCD内接于O,点P在上,则BPC的度数为_3、如图,四个小正方形的边长都是1,若以O为圆心,OG为半径作弧分别交AB,CD于点E,F,则弧EF的长是_4、如图,点O和点I分别是ABC的外心和内心,若BOC130,则BIC_5、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图1,抛物线yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左边),与y

5、轴的正半轴交于点C,顶点为D,OBOC3OA(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线ykx2k5(k0)与抛物线交于F、G两点,求当k为何值时,FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y2x1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点设平移过程中抛物线的顶点的横坐标为m,在x轴上存在唯一的一点P,使EPF90,求m的值2、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分(1)求证:是切线;(2)若,求的半径和的长3、如图,ABC内接于

6、O,高AD经过圆心O(1)求证:;(2)若,O的半径为5,求ABC的面积 4、如图,点D是上一点,与相交于点F,且(1)求证:;(2)求证:;(3)若点D是中点,连接,求证:平分5、已知:A,B是直线l上的两点求作:ABC,使得点C在直线l上方,且AC=BC,作法:分别以A,B为圆心,AB长为半径画弧,在直线l上方交于点O,在直线l下方交于点E;以点O为圆心,OA长为半径画圆;作直线OE与直线l上方的O交于点C;连接AC,BCABC就是所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,A

7、CBAOB( )(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC( )(填推理的依据)ABC就是所求作的三角形-参考答案-一、单选题1、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长

8、公式是解题的关键2、B【分析】连接 由为的直径,求解 结合为的切线,求解 再利用圆周角定理可得答案.【详解】解:连接 为的直径, 为的切线, 故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、B【分析】如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 再由等边三角形的性质,可得OAB=30,然后根据锐角三角函数,即可求解【详解】解:如图, 为正三角形ABC的外接圆,过点O作ODAB于点D,连接OA, 根据题意得:OA= ,OAB=30,在中, ,AB=3,即这个正三角

9、形的边长是3故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键4、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解【详解】当或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;圆的直径所对的圆

10、周角为直角斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;以为三边长度的三角形,是直角三角形,故(5)错误;故选:D【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解5、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算ABD的度数【详解】AB是O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理

11、:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径6、B【分析】连接AC,根据菱形的性质得到ABC、ACD是等边三角形,求出BCD=120,再根据圆周角定理即可求解【详解】如图,连接ACAC=AB=AD四边形ABCD是菱形AB=BC=AD=CD=ACABC、ACD是等边三角形ACB=ACD=60BCD=120优弧BED=BCD=120故选B【点睛】此题主要考查圆内角度求解,解题的关键是熟知菱形的性质及圆周角定理7、D【分析】阴影面积为旋转后为直径的半圆面积加旋转后扇形面积减去旋转前为直径的半圆面积,则阴影面积

12、为旋转后的扇形面积,由扇形面积公式计算即可【详解】直径AB6的半圆,绕B点顺时针旋转30又AB=6,ABA=30故答案为:D【点睛】本题考查了扇形面积公式的应用,扇形面积公式为,由旋转的性质得出阴影面积为扇形面积是解题的关键8、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面

13、积,这是解决本题的关键9、A【分析】如图所示,连接OA,由垂径定理得到AB=2AD,先求出,即可利用勾股定理求出,即可得到答案【详解】解:如图所示,连接OA,半径OCAB,AB=2AD,ODA=90,故选:A【点睛】本题主要考查了垂径定理和勾股定理,熟知垂径定理是解题的关键10、C【分析】直接由圆周角定理求解即可【详解】解:A56,A与BOC所对的弧相同,BOC2A112,故选:C【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半二、填空题1、15【分析】根据圆周角定理可得正多边形的边AB所对的圆心角AOB24,再

14、根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案【详解】解:如图,设正多边形的外接圆为O,连接OA,OB,ADB12,AOB2ADB24,而3602415,这个正多边形为正十五边形,故答案为:15【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提2、45度【分析】连接OB、OC,根据正方形的性质得到BOC的度数,利用圆周角与圆心角的关系得到答案【详解】解:连接OB、OC,四边形ABCD是正方形,BOC=90,BPC=,故答案为:45【点睛】此题考查了圆内接正方形的性质,圆周角定理:同弧所对的圆周角等于圆

15、心角的一半,熟记各知识点是解题的关键3、【分析】先根据得出,同理可得出,进而得出,根据扇形的弧长公式计算即可【详解】由题意可得:在中,同理可得:,故答案为:【点睛】本题考查了扇形的弧长计算,以及直角三角形的性质,熟练掌握扇形的弧长计算公式和直角三角形中角所对的直角边等于斜边的一半是解题关键4、122.5【分析】如图所示,作ABC外接圆,利用圆周角定理得到A=65,由于I是ABC的内心,则BIC=180-ABC-ACB,然后把BAC的度数代入计算即可【详解】解:如图所示,作ABC外接圆,点O是ABC的外心,BOC=130,A=65,ABC+ACB=115,点I是ABC的内心,IBC+ICB=11

16、5=57.5,BIC=18057.5=122.5故答案为:122.5【点睛】此题主要考查了三角形内心和外心的综合应用,根据题意得出IBC+ICB的度数是解题关键5、【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解】解:正六边形ABCDEF的边长为2, =120,ABC+BAC+BCA=180,BAC=(180-ABC)=(180-120)

17、=30,过B作BHAC于H,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键三、解答题1、(1)y-x2+2x+3;(2)k=-2,面积最小为;(3)m=或【分析】(1)令x=0,解得y=b,求出OBOCb,OA=,得到A(-,0),C(0,b),B(b,0),把A(-,0),B(b,0)代入yax22ax+b即可求解;(2)设直线EH的解析式为y

18、=nx+7,联立,得,根据直线EH与函数只有一个交点,求出H(2,3),再得到直线GH过定点M(2,-5),利用SFGH=SFMH+SGMH=4,求出的最小值即可求解;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90,设点E,F的坐标分别为F(x1,y1)、F(x2,y2),求出平移后的抛物线的解析式为y-(x-m)2+2m+2,联立得到,求出x1+x2=2m+2,x1x2=,y1+y2=4m-6,表示出点R(m-1,2m-3),求出2,利用PR=,得到EF2=4PR2,列出关于m的方程即可求解【详解】(1)yax22ax+b(a0)与x轴交于A、B两点(A点在B点的左

19、边),与y轴的正半轴交于点C,令x=0,解得y=bCO=bOBOCb,OA=A(-,0),C(0,b),B(b,0)把A(-,0),B(b,0)代入yax22ax+b得,解得抛物线解析式为y-x2+2x+3;(2)点E的坐标为(0,7),可设直线EH的解析式为y=nx+7联立,得直线EH与函数只有一个交点,且在对称轴右侧=解得n1=-2,n2=6(舍去)直线EH的解析式为y=-2x+7解方程得x1=x2=2H(2,3)直线GH解析式ykx2k5=k(x-2)-5直线GH过定点M(2,-5)如图,连接HMH(2,3)HMx轴,MH=8设F(x2,y2)、G(x1,y1)联立,得到x1+x2=2-

20、k,x1x2=-2k-8SFGH=SFMH+SGMH=4故当最小时,SFGH最小2=故当k=-2时,2的最小值为32故的最小值为此时SFGH最小为4=;(3)当以EF为直径的与x轴相切时,x轴上存在点P即切点,使EPF=90如图,与x轴相切时,切点为点P,y-x2+2x+3=-(x-1)2+4设点E,F的坐标分别为F(x1,y1)、F(x2,y2),当平移后的抛物线的顶点的横坐标为m时,则抛物线向右平移了m-1个单位,故相应地纵坐标向上平移了2(m-1)=个单位,则平移后的抛物线的解析式为y-(x-m)2+4+2(m-1)=-(x-m)2+2m+2联立得到x1+x2=2m+2,x1x2=y1+

21、y2=2(x1+x2)-2=4m-6,则点R(m-1,2m-3),2=(2m+2)2-4()=16,PR=则EF2=4PR2EF2=2+2=52=516=4PR2PR=2m-3516=4(2m-3)2解得m=当m=或m=符合题意【点睛】此题主要考查二次函数综合运用,解题的关键是熟知圆的切线的性质、勾股定理、二次函数的图像与性质、一元二次方程相关性质2、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OAAE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OFCD,所以四边形AEFO是矩形,利用勾股定理即可求出结果(1)证明:如图,连接OA,AECD,DAE+ADE=9

22、0DA平分BDE,ADE=ADO,又OA=OD,OAD=ADO,DAE+OAD=90,OAAE,AE是O切线;(2)解:如图,取CD中点F,连接OF,OFCD于点F四边形AEFO是矩形,CD=6,DF=FC=3在RtOFD中,OF=AE=4,在RtAED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,AD的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质3、(1)见解析;(2)【分析】(1)根据垂径定理可得AD垂直平分BC,即可证明结论;(2)连接OB,根据勾股定理可得,得出,利用三角形面积公式求解即可【详解】证明

23、:(1)在O中, ODBC于D, BD=CD, AD垂直平分BC, AB=AC; (2)连接OB,如图所示:BC=8,由(1)得BD=CD, , , , , ABC的面积:, ABC的面积为32【点睛】题目主要考查垂径定理的应用,垂直平分线的性质,勾股定理等,理解题意,综合运用各个定理性质是解题关键4、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在和中,故可证明三角形相似(2)由得出(3)法一:由题意知,由得,有,所以可得,又因为可得,;由于,进而说明,得出平分法二:通过得出F、D、C、E四点共圆,由得,从而得出平分【详解】解:(1)证明在和中 (2)证明:在和中 (3)

24、证明:又D是中点,平分法二:F、D、C、E四点共圆又D是点,平分【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点解题的关键与难点在于角度的转化解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解5、(1)见解析;(2)同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【分析】(1)根据题意补全图形;(2)根据同一个圆中,同弧所对的圆周角等于圆心角的一半,及垂直平分线上的点到两端点的距离相等即可【详解】(1)作图正确;(2)证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB(同弧所对的圆周角等于圆心角的一半)(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC(线段垂直平分线上的点到这条线段两个端点的距离相等)(填推理的依据)ABC就是所求作的三角形,故答案是:同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【点睛】本题是圆的综合题、作图、考查了圆周角定理、垂直平分线、等腰三角形,解题的关键是熟练掌握圆周角定理及作图的基本能力

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁