《2022年中考数学复习训练题(含解析)----图形认识初步.pdf》由会员分享,可在线阅读,更多相关《2022年中考数学复习训练题(含解析)----图形认识初步.pdf(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年 中 考 数 学 复 习 新 题 速 递 之 图 形 认 识 初 步(2022年 5 月)一.选 择 题(共 10小 题)1.(2022春 禅 城 区 校 级 月 考)若/l+N2=90,Z l+Z 3=9 0,则 N 2与 N 3的 关 系 是()A.Z 2=Z 3 B.Z 2 Z 3 C.Z 2 Z 3 D.不 能 确 定 2.(2022石 家 庄 一 模)将 量 角 器 按 图 方 式 放 置,其 中 角 度 为 4 5 的 角 是()A.ZAOB B.Z B O C C.Z C O D D.Z D O E3.(2022青 龙 县 一 模)若 图 1所 示 的 正 方 体 表
2、面 展 开 图 是 图 2,则 正 方 体 上 面 的 几 何 图 形 其 中,可 以 用“两 点 之 间 线 段 最 短”来 解 释 的 是()A.B.C.木 条 固 定 D.5.(2022丰 台 区 一 模)如 图,直 角 三 角 板 的 直 角 顶 点 A 在 直 线/上,如 果/1=35,那 么)N 2 的 度 数 是(C.35 D.256.(2022青 岛 一 模)如 图 长 方 体 的 展 开 图,不 可 能 是(7.(2022春 江 阴 市 期 中)如 图,l/h,将 一 副 直 角 三 角 板 作 如 下 摆 放,图 中 点 4、B、C在 同 一 直 线 上,21=80,则 N
3、 2 的 度 数 为()C.130 D.1508.(2022春 中 山 市 期 中)如 图,轮 船 与 灯 塔 相 距 1000,则 下 列 说 法 中 正 确 的 是()JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 轮 船 A.轮 船 在 灯 塔 的 北 偏 西 55,1000?处 B.灯 塔 在 轮 船 的 北 偏 东 35,1000m 处 C.轮 船 在 灯 塔 的 南 偏 东 55,1000?处 D.灯 塔 在 轮 船 的 南 偏 西 35,1000?处 9.(2022邯 山 区 模 拟)如 图 是 一 个 不 完 整 的 正 方 体 平 面 展 开 图,需
4、 再 添 上 一 个 面,折 叠 后 才 能 围 成 一 个 正 方 体.下 列 添 加 方 式(图 中 阴 影 部 分)正 确 的 是()10.(2022春 江 岸 区 期 中)如 图,轮 船 航 行 到 4 处 时,观 测 到 小 岛 B 的 方 向 是 北 偏 东 60,那 么 同 时 从 8 观 测 轮 船 的 方 向 是()A.北 偏 东 60 B.北 偏 东 30 C.南 偏 东 30 D.南 偏 西 60二.填 空 题(共 1 0小 题)11.(2022花 都 区 一 模)如 图,点。是 直 线 A B上 一 点,NAOC=50,则/8 0 C 的 度 数为 1213141516
5、1718.(2022兴 化 市 一 模)如 图,将 图 中 的 正 方 体 切 去 一 块,可 得 到 如 图 所 示 的 几 何 体,若 正 方 体 的 棱 长 为 1,则 图 中 几 何 体 的 表 面 积 为.(2022春 海 淀 区 校 级 期 中)如 图,已 知 线 段 A 3上 有 两 点 C,D,且 AC:CD:D B=2:3:4,E,尸 分 别 为 AC,QB 的 中 点,EF=2Acm,则 A 5=cm.i i i iA E C D F B.(2022春 文 登 区 校 级 期 中)如 图 有 a 条 直 线,8 条 射 线,c条 线 段,则 a+b-c=.XB C.(202
6、2东 莞 市 一 模)若 一 个 角 的 余 角 是 25,那 么 这 个 角 的 度 数 是.(2 0 2 2春 高 唐 县 期 中)若 一 个 角 的 补 角 比 它 余 角 的 2 倍 大 45,则 这 个 角 的 度 数 为.(2022春 文 登 区 校 级 期 中)钟 表 上 7:5 0分 针 与 时 针 的 夹 角 是.(2022春 二 七 区 校 级 期 中)如 图,A、8 之 间 是 一 座 山,一 条 铁 路 要 通 过 4、B 两 地,在 A地 测 得 铁 路 的 走 向 是 北 偏 东 68,如 果 A、B两 地 同 时 开 工,那 么 在 B地 按 方 向 施 工,才
7、能 使 铁 路 在 山 腹 中 准 确 接 通.JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 19.(2022南 关 区 校 级 开 学)如 图,C 是 线 段 A。的 中 点,AC=1.5,BC=2.2,则 B Q 的 长 为.1 I A C D R20.(2022 铜 仁 市 模 拟)在 直 线/上 有 4、8、。三 点,48=8,力,席=3。制,则 4(7的 长 为 三.解 答 题(共 1 0小 题)21.(2022春 景 县 期 中)如 图,A B 与 C D 交 于 点。,EO1AB.(1)若 A 2 在 东 西 方 向 上,点 C 在 点。的 南 偏 西
8、 20方 向 上,则 点。在 点。的 方 向 上;(2)若 NEOD=28,求 N A O C 的 度 数;(3)若/A O C:/8 O C=1:2.求 N E O。的 度 数.北-T-东 22.(2022春 文 登 区 校 级 期 中)如 图,C、。是 线 段 A B 上 两 点,AC:BC=3:2,点。为 A B 的 中 点,4 3=30,求 线 段 8 的 长;t 1 1 1A D C B23.(2022春 文 登 区 校 级 期 中)如 图 O C 平 分/4OB,OM,O N 分 别 平 分/A O C 和/COB,若 NMON=40,求 NAOB.BNO A24.(2022春 东
9、 昌 府 区 月 考)计 算:(1)33 16 28+24 46 37;(2)24 31 X4-62 10.25.(2022春 袁 州 区 校 级 月 考)如 图,已 知/AO=90,。为/B O C 的 平 分 线,O E 为 0 8 的 反 向 延 长 线.(1)若/AOB=60 时,则/C O E=;(2)若 NCOE=140 时,贝 l J/A O 8=;(3)写 出/A O 3 与 N C O E 之 间 的 数 量 关 系,并 说 明 理 由.26.(2022春 将 乐 县 期 中)己 知/I,/2(N 2 是 直 角),利 用 尺 规 求 作 乙 4OC,使 得/A O C与 N
10、 1 互 余.(要 求:不 得 直 接 作 在 原 图 上,保 留 作 图 痕 迹,不 写 作 法)27.(2022春 江 都 区 期 中)如 图,将 正 方 形 纸 片 A8CZ)折 叠,使 点。落 在 边 点 E 处,点 A 落 在 点 尸 处,折 痕 为 M N,若 NNEC=32,求 N F M N 的 大 小.28.(2022春 文 登 区 校 级 期 中)0 M 平 分 N B O A,射 线 O C 在/8 O M 内,O N 平 仔 NBOC,JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 N A 0 C=80,求 NM0N.29.(2022春 高 州
11、 市 期 中)将 直 角 三 角 板 0 M N 的 直 角 顶 点。放 在 直 线 A B 上,射 线 0 C 平 分 NA0N.(1)如 图,若 NBCW=60,求 N A 0 M 的 度 数;(2)若 N A 0 M=2/C 0 M,求/A O N 的 度 数;(3)将 直 角 三 角 板 0 M N 绕 顶 点。按 逆 时 针 方 向 旋 转,在 旋 转 过 程 中:当 NBON=12030.(2022春 东 西 湖 区 校 级 月 考)一 个 边 长 为 36c机 的 正 方 形 纸 片.(1)如 图 1,把 它 沿 对 角 线 剪 开 成 4 个 小 三 角 形,可 以 拼 成 两
12、 个 小 正 方 形,则 每 个 小 正 方 形 的 边 长 是;(2)若 想 把 它 做 成 一 个 底 面 积 为 288a“2,长、宽 比 为 16:9 的 无 盖 长 方 体 盒 子(粘 贴 处 忽 略 不 计),能 做 出 来 吗?如 果 能,在 图 2 画 出 剪 裁 示 意 图,并 计 算 出 长 方 体 盒 子 的 高 最 大 是 多 少?如 果 不 能,请 说 明 理 由.图 1 图 22022年 中 考 数 学 复 习 新 题 速 递 之 图 形 认 识 初 步(2022年 5 月)参 考 答 案 与 试 题 解 析 选 择 题(共 10小 题)1.(2022春 禅 城 区
13、 校 级 月 考)若/1+/2=9 0,/l+N 3=9 0,则 N 2与/3 的 关 系 是()A.Z 2=Z 3 B.Z 2 Z 3 C.Z 2 Z 3 D.不 能 确 定【考 点】余 角 和 补 角.【专 题】线 段、角、相 交 线 与 平 行 线;推 理 能 力.【分 析】利 用 互 余 关 系 推 理 即 可.【解 答】解:/1+/2=9 0,:.Z 2=9 0-Z 1,V Z 1+Z 3=9O,;.N 3=9 0-Z l,A Z 2=Z 3.故 选:A.【点 评】本 题 考 查 的 是 同 角 的 余 角 相 等,解 题 的 关 键 就 是 变 形,等 量 代 换.2.(2022石
14、 家 庄 一 模)将 量 角 器 按 图 方 式 放 置,其 中 角 度 为 4 5 的 角 是()A.ZAO B B.NBOC C.A COD D.A DOE【考 点】角 的 概 念.【专 题】线 段、角、相 交 线 与 平 行 线:应 用 意 识.【分 析】根 据 量 角 器 分 别 得 出 每 个 角 的 度 数 即 可.【解 答】解:由 量 角 器 可 知,/月。8=4 0,NBOC=45,NCOO=55,ZD O E=35,故 选:B.JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源【点 评】本 题 主 要 考 查 角 的 概 念,熟 练 掌 握 角 的 概
15、念 是 解 题 的 关 键.3.(2022青 龙 县 一 模)若 图 1所 示 的 正 方 体 表 面 展 开 图 是 图 2,则 正 方 体 上 面 的 几 何 图 形【考 点】几 何 体 的 展 开 图.【专 题】展 开 与 折 叠;几 何 直 观.【分 析】由 正 方 体 的 表 面 展 开 图 及 俯 视 图 即 可 得 出 结 论.【解 答】解:由 正 方 体 的 表 面 展 开 图 及 俯 视 图 可 得,三 角 形 下 面 的 边 连 着 四 个 点 的 面,与 四 个 点 的 面 相 对 的 是 两 个 点 的 面,故 正 方 体 上 面 的 是 两 个 点 的 图,故 选 A
16、.【点 评】本 题 主 要 考 查 几 何 体 的 展 开 图,熟 练 掌 握 正 方 体 展 开 图 的 知 识 是 解 题 的 关 键.4.(2022仪 征 市 一 模)下 列 三 个 日 常 现 象:其 中,可 以 用“两 点 之 间 线 段 最 短”来 解 释 的 是()A.B.C.【考 点】线 段 的 性 质:两 点 之 间 线 段 最 短.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观;应 用 意 识.【分 析】利 用 线 段 的 性 质 进 行 解 答 即 可.【解 答】解:图 利 用 垂 线 段 最 短;_一 一-木 条 固 定 D.图 利 用 两 点 之 间
17、 线 段 最 短;图 利 用 两 点 确 定 一 条 直 线:故 选:B.【点 评】此 题 主 要 考 查 了 线 段 的 性 质,关 键 是 掌 握 直 线、线 段 和 垂 线 的 性 质.5.(2022丰 台 区 一 模)如 图,直 角 三 角 板 的 直 角 顶 点 A 在 直 线/上,如 果 N l=3 5,那 么 A.55 B.45 C.35 D.25【考 点】余 角 和 补 角.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 图 形 可 判 断/I 与/2 互 余,继 而 可 得 出 答 案.【解 答】解:由 图 形 可 得 N 1与 2 2 互
18、 余,V Z 1=3 5,A Z 2=9 0-35=55.故 选:A.【点 评】本 题 考 查 了 补 角 和 余 角 的 知 识,难 度 一 般,解 答 本 题 的 关 键 是 熟 记 互 余 两 角 之 和 等 于 90.6.(2022青 岛 一 模)如 图 长 方 体 的 展 开 图,不 可 能 是()JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源【专 题】投 影 与 视 图;空 间 观 念.【分 析】根 据 长 方 体 的 展 开 图 特 征 即 可 得 出 答 案.【解 答】解:根 据 长 方 体 的 展 开 图 可 知,其 表 面 展 开 图 不 正 确
19、的 是 Q.故 选:D.【点 评】此 题 主 要 考 查 了 长 方 体 的 展 开 图,立 意 新 颖,培 养 了 学 生 的 空 间 想 象 力.7.(2022春 江 阴 市 期 中)如 图,1/12,将 一 副 直 角 三 角 板 作 如 下 摆 放,图 中 点 A、B、CA.100 B.120 C.130 D.150【考 点】余 角 和 补 角.【专 题】线 段、角、相 交 线 与 平 行 线;推 理 能 力.【分 析】利 用 猪 脚 模 型,求 解 即 可.【解 答】解:如 图,过 点 4 作:li/l2,:.AD/l2,:N F N A+N N A D=180,.NEMA+NMM)
20、=180,A ZEMA+ZMAD+ZDAN+ZANF=+180=360,Z EMA=Z EM C+Z CM A=80 0+60=140,NMAD+NDAN=9Q,.ZFM4=360-140-90=130,即 N 2=130,故 选:C.【点 评】本 题 考 查 的 是 平 行 线 典 型 的 猪 脚 模 型,解 题 的 关 键 是 能 看 出 猪 脚 模 型,快 速 进 入 解 题 思 路.8.(2022春 中 山 市 期 中)如 图,轮 船 与 灯 塔 相 距 1000?,则 下 列 说 法 中 正 确 的 是()A.轮 船 在 灯 塔 的 北 偏 西 55,1000相 处 B.灯 塔 在
21、轮 船 的 北 偏 东 35,1000?处 C.轮 船 在 灯 塔 的 南 偏 东 55,1000?处 D.灯 塔 在 轮 船 的 南 偏 西 35,1000?处【考 点】方 向 角.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】先 求 出 55。的 余 角,然 后 根 据 方 向 角 的 定 义,即 可 解 答.【解 答】解:如 图:JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 由 题 意 得:90-55=3 5。,二 灯 塔 在 轮 船 的 北 偏 东 35,1000?处,轮 船 在 灯 塔 的 南 偏 西 35,1000,处,故
22、选:B.【点 评】本 题 考 查 了 方 向 角,熟 练 掌 握 方 向 角 的 定 义 是 解 题 的 关 键.9.(2022邯 山 区 模 拟)如 图 是 一 个 不 完 整 的 正 方 体 平 面 展 开 图,需 再 添 上 一 个 面,折 叠 后 才 能 围 成 一 个 正 方 体.下 列 添 加 方 式(图 中 阴 影 部 分)正 确 的 是()【考 点】展 开 图 折 叠 成 几 何 体.【专 题】展 开 与 折 叠;空 间 观 念;几 何 直 观.【分 析】利 用 正 方 体 及 其 表 面 展 开 图 的 特 点 解 题.【解 答】解:选 项 A,B,C 折 叠 后 有 一 行
23、 两 个 面 无 法 折 起 来,而 且 都 缺 少 一 个 面,不 能 折 成 正 方 体.选 项。可 折 成 正 方 体.故 选:D.【点 评】本 题 考 查 展 开 图 折 叠 成 几 何 体 的 知 识,注 意 掌 握 只 要 有“田”字 格 的 展 开 图 都 不 是 正 方 体 的 表 面 展 开 图.10.(2022春 江 岸 区 期 中)如 图,轮 船 航 行 到 A 处 时,观 测 到 小 岛 3 的 方 向 是 北 偏 东 60,【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 题 意 画 出 图 形,再 利 用 方 向 角 的 定 义 即
24、 可 解 答.【解 答】解:如 图:.从 B 观 测 轮 船 的 方 向 是 南 偏 西 60,故 选:D.【点 评】本 题 考 查 了 方 向 角,根 据 题 目 的 已 知 条 件 画 出 图 形 分 析 是 解 题 的 关 键.二.填 空 题(共 10小 题)11.(2022花 都 区 一 模)如 图,点 O 是 直 线 A B上 一 点,/A O C=5 0,则/B O C 的 度 数 为 130.【考 点】角 的 概 念.【专 题】线 段、角、相 交 线 与 平 行 线;应 用 意 识.JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源【分 析】根 据 补 角
25、的 概 念 直 接 计 算 即 可.【解 答】解:N A 0 C=50,.ZB0C=180-Z A 0 C=180-50=130,故 答 案 为:130.【点 评】本 题 主 要 考 查 角 的 概 念,熟 练 掌 握 角 的 概 念 是 解 题 的 关 键.12.(2022兴 化 市 一 模)如 图,将 图 中 的 正 方 体 切 去 一 块,可 得 到 如 图 所 示 的 几 何 体,若 正 方 体 的 棱 长 为 1,则 图 中 几 何 体 的 表 面 积 为 受 返.一 2 一【考 点】截 一 个 几 何 体;几 何 体 的 表 面 积.【专 题】计 算 题;几 何 直 观;运 算 能
26、 力.【分 析】根 据 几 何 体 可 以 看 出,几 何 体 的 表 面 积 为 三 个 正 方 形,三 个 等 腰 直 角 三 角 形 和 一 个 以 对 角 线 为 边 长 的 等 边 三 角 形 围 成,分 别 求 出 这 些 图 形 的 面 积 即 可.【解 答】解:根 据 几 何 体 可 以 看 出,几 何 体 的 表 面 积 为 三 个 正 方 形,三 个 等 腰 直 角 三 角 形 和 一 个 以 对 角 线 为 边 长 的 等 边 三 角 形 围 成,三 个 正 方 形 的 面 积 为 3X 1义 1=3,三 个 等 腰 直 角 三 角 形 的 面 积 为 3 X 1 X 1
27、 X 1=3,2 2以 对 角 线 为 边 长 的 等 边 三 角 形 的 面 积 为 近,2 2 2几 何 体 的 面 积 为 3+3+1=史 返,2 2 2故 答 案 为:史 返.2【点 评】本 题 主 要 考 查 几 何 体 的 表 面 积,熟 练 掌 握 正 方 体 面 积 公 式,三 角 形 面 积 公 式,三 角 形 面 积 公 式 是 解 题 的 关 键.13.(2022春 海 淀 区 校 级 期 中)如 图,已 知 线 段 A B 上 有 两 点 C,D,且 4C:CD;D B=2:3:4,E,尸 分 别 为 A C,的 中 点,E F=2 A c m,则 AB=3.6 cm.
28、I l l I 1 1A E C D F B【考 点】两 点 间 的 距 离.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观;运 算 能 力;推 理 能 力.【分 析】首 先 设 A C=2 XCTW,则 线 段 C Z)=3 X C M,D B=4 x c m,然 后 根 据 E、尸 分 别 是 线 段 AC、的 中 点,分 别 用 x 表 示 出 EC、D F,根 据 E F=2.4 a,求 出 x 的 值,即 可 求 出 线 段 A 3的 长 是 多 少.【解 答】解:设 AC=2x,则 线 段 CZ)=3x,DB=4x,:E、F 分 别 是 线 段 AC、的 中 点,
29、;.E C=X 4 C=x,D F=lD B 2 x,2 2EC+CD+DFx+3x+2x=2A,,x=0.4,.A B=9x=9X 0.4=3.6(cm),故 答 案 为:3.6.【点 评】此 题 主 要 考 查 了 两 点 间 的 距 离 的 求 法,以 及 线 段 的 中 点 的 特 征 和 应 用,要 熟 练 掌 握.14.(2022春 文 登 区 校 级 期 中)如 图 有 a 条 直 线,人 条 射 线,c 条 线 段,则 a+b-c=1.XB C【考 点】直 线、射 线、线 段.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 直 线、线 段、射
30、 线 的 定 义 判 解 答 即 可.【解 答】解:图 中 只 有 4。1条 直 线,故 4=1;图 中 共 有 6 条 射 线,故 6=6;图 中 共 有 6 条 线 段,故 c=6;.a+b-c 1+6-6=1,故 答 案 为:1.JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源【点 评】此 题 考 查 直 线、线 段、射 线,关 键 是 根 据 直 线、线 段、射 线 的 区 别 解 答.15.(2022东 莞 市 一 模)若 一 个 角 的 余 角 是 25,那 么 这 个 角 的 度 数 是 65.【考 点】余 角 和 补 角.【专 题】线 段、角、相 交 线
31、 与 平 行 线;几 何 直 观;运 算 能 力.【分 析】根 据 余 角:如 果 两 个 角 的 和 等 于 90(直 角),就 说 这 两 个 角 互 为 余 角,即 其 中 一 个 角 是 另 一 个 角 的 余 角 进 行 计 算 即 可.【解 答】解:这 个 角 的 的 度 数 是 90。-25=65.故 答 案 为:65.【点 评】此 题 主 要 考 查 了 余 角,解 题 的 关 键 是 明 确 两 个 角 互 余,和 为 90.16.(2022春 高 唐 县 期 中)若 一 个 角 的 补 角 比 它 余 角 的 2 倍 大 45。,则 这 个 角 的 度 数 为 4 5.【考
32、 点】余 角 和 补 角.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】设 这 个 角 为。,根 据 题 意 可 列 代 数 式 180-4=2(90-。)+45,求 出 即 可 得 出 答 案.【解 答】解:设 这 个 角 为“,则 180-a=2(90-a)+45,解 得:a=45.故 答 案 为:45.【点 评】本 题 主 要 考 查 了 余 角 和 补 角,熟 练 掌 握 余 角 和 补 角 进 行 求 解 是 解 决 本 题 的 关 键.17.(2022春 文 登 区 校 级 期 中)钟 表 上 7:50分 针 与 时 针 的 夹 角 是 65。.【考
33、点】钟 面 角.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】根 据 时 钟 上 一 大 格 是 30,时 针 一 分 钟 转 0.5,进 行 计 算 即 可 解 答.【解 答】解:由 题 意 得:3X300-50X0.5=90-25=65,.钟 表 上 7:50时,分 针 与 时 针 成 65度 角,故 答 案 为:65.【点 评】本 题 考 查 了 钟 面 角,熟 练 掌 握 时 钟 上 一 大 格 是 30,时 针 一 分 钟 转 0.5是 解 题的 关 键.18.(2022春 二 七 区 校 级 期 中)如 图,A、3 之 间 是 一 座 山,一 条 铁
34、路 要 通 过 A、B 两 地,在 A 地 测 得 铁 路 的 走 向 是 北 偏 东 68,如 果 A、B 两 地 同 时 开 工,那 么 在 2 地 按 南 偏 西 西。方 向 施 工,才 能 使 铁 路 在 山 腹 中 准 确 接 通.【考 点】方 向 角.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 方 向 角 的 定 义,即 可 解 答.【解 答】解:如 果 A、8 两 地 同 时 开 工,那 么 在 B 地 按 南 偏 西 6 8 方 向 施 工,才 能 使 铁 路 在 山 腹 中 准 确 接 通,故 答 案 为:南 偏 西 68.【点 评】本
35、 题 考 查 了 方 向 角,熟 练 掌 握 方 向 角 的 定 义 是 解 题 的 关 键.19.(2022南 关 区 校 级 开 学)如 图,C 是 线 段 4。的 中 点,AC=1.5,BC=2.2,则 B)的 长 为 0.7.I_I_ I_)A C D R【考 点】两 点 间 的 距 离.【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 点 C 是 线 段 A D 的 中 点,得 到 4 O=2 A C,可 求 出 A Q,代 入 8=A3-AO即 可 求 出 5 0.【解 答】解:点。是 线 段 A D的 中 点,:.AD=2AC,AC=1.5,:.
36、AD=3fVAC=1.5,BC=2.2,A8=AC+8C=3.7,JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 又:4。=3,:.BD=AB-AD=3.1-3=0.7.故 答 案 为:0.7.【点 评】本 题 考 查 了 两 点 之 间 的 距 离,关 键 是 掌 握 中 点 的 性 质.20.(2022铜 仁 市 模 拟)在 直 线/上 有 A、B、C 三 点,AB=8cm,BC=3cm,则 A C 的 长 为 5cm 或 1.【考 点】两 点 间 的 距 离.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】根 据 题 意 可 分 为
37、当 点 C 在 点 B 右 侧 时 和 当 点 C 在 点 B 左 侧 时 两 种 情 况 进 行 讨 论,并 根 据 线 段 之 间 的 和 差 关 系 进 行 求 解 即 可.【解 答】解:当 A、B、C 的 位 置 如 图 1所 示 时,AB=Scm,BC=3cm,:.BC=AB-BC=5(cm);当 A、B、C 的 位 置 如 图 2 所 示 时,BC=A2+BC=8+3=11(cm).故 答 案 为:5cm或 11cm.I 1 a 1 IA C B A B C图 1 图 2【点 评】本 题 考 查 的 是 两 点 间 的 距 离.解 答 此 题 时 要 注 意 分 类 讨 论.三.解
38、 答 题(共 1 0小 题)21.(2022春 景 县 期 中)如 图,A 8 与 C D 交 于 点。,EO1AB.(1)若 A B 在 东 西 方 向 上,点 C 在 点。的 南 偏 西 20方 向 上,则 点。在 点。的 北 偏 东 20 方 向 上:(2)若/EOD=28,求/A O C 的 度 数;(3)若 N A O C:N B O C=1:2.求/E O。的 度 数.北-T-东【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】利 用 互 余 的 两 个 角 的 关 系,对 顶 角 的 关 系 来 进 行 计 算 即 可.【解 答】解:(1)点 C 在 点
39、。的 南 偏 西 2 0 方 向 上,则 利 用 方 位 角 可 知,点。在 点 O的 北 偏 东 2 0 方 向 上;(2)V ZAOC+ZAOE+ZEOD=SQ0,ZEO=28,NAOE=90,:.ZAOC=62;(3)V Z A O C:/B O C=1:2,:.ZBOC2ZAOC,:N A O C+/B O C=180,.NAOC+2NAOC=180,/.ZAOC=60,V ZAOC+ZAOE+ZEODSOQ,ZAOE=90,.N E O O=30.故 答 案 为:(1)北 偏 东 20;(2)62;(3)30.【点 评】本 题 考 查 的 是 互 余 的 角、方 位 角 的 关 系,
40、解 题 的 关 键 是 弄 清 楚 方 位 角 的 表 示 方 法 及 互 余 两 角 的 数 量 关 系.22.(2022春 文 登 区 校 级 期 中)如 图,C、。是 线 段 AB上 两 点,AC:BC=3:2,点。为 A B的 中 点,A B=3 0,求 线 段 C)的 长;t 1 1 tA D C B【考 点】两 点 间 的 距 离.【专 题】线 段、角、相 交 线 与 平 行 线;推 理 能 力.JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源【分 析】根 据 题 意 易 得 到 A O=B Q=L B=15,B C=2 AB=1 2,再 根 据 线 段 之
41、 间 的 和 差 2 5关 系 求 解 即 可.【解 答】解:;。是 线 段 A B的 中 点,.8。=1 8=工*30=15,2 2:ACt 8 c=3:2:.BC=2A B=2,5:.C D=B D-B C=5-12=3,故 线 段 C D的 长 为 3.【点 评】本 题 考 查 两 点 间 的 距 离,解 题 的 关 键 是 根 据 线 段 的 比 例 关 系 以 及 线 段 中 点 性 质 得 出 各 线 段 的 值.23.(2022春 文 登 区 校 级 期 中)如 图 0 C 平 分 乙 4。8,0M,0 N 分 别 平 分 N A 0 C和 N C 08,若 NM ON=40,求
42、/A O B.B/N【考 点】角 的 计 算;角 平 分 线 的 定 义.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力;推 理 能 力.【分 析】由 OM、ON 分 别 平 分 NAOC 和 NCOB 得 N A 0C=2N C 0M,ZB O C=2ZC O N,进 而 由 角 的 和 差 关 系 得/A 0 B=2/M 0 N,便 可 求 得 结 果.【解 答】解:;0M、O N分 别 平 分 N A O C和/C 0 8,A Z A 0 C=2 Z C 0 M,Z B 0 C=2 Z C 0 N,:.Z A O B=Z A 0 C+Z B 0 C=2(NCOM+NCO
43、N)=2N M 0N,;NM ON=40,;.N A O 8=80.【点 评】本 题 考 查 了 角 平 分 线 的 定 义,关 键 根 据 角 平 分 线 定 义 得 出 所 求 角 与 已 知 角 的 关 系 转 化 求 解.24.(2022春 东 昌 府 区 月 考)计 算:(1)33 16 28”+24 46 37;(2)24 31 X4-62 10.【考 点】度 分 秒 的 换 算.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】(1)根 据 度 分 秒 的 进 制,进 行 计 算 即 可 解 答;(2)根 据 度 分 秒 的 进 制,进 行 计 算 即
44、可 解 答.【解 答】解:(1)33 16,28+24 46 37=57 62 65=58 3 5;(2)24 31 X4-620 10=96 124-62 10=34 114=35 54.【点 评】本 题 考 查 了 度 分 秒 的 换 算,熟 练 掌 握 度 分 秒 的 进 制 是 解 题 的 关 键.25.(2022春 袁 州 区 校 级 月 考)如 图,已 知 乙 40=90,0。为 N 3 O C 的 平 分 线,O E 为 O B 的 反 向 延 长 线.(1)若 NAOB=60 时,则 N C O=120;(2)若/C O E=140 时,则 N A O B=70;(3)写 出/
45、A O B 与 N C O E 之 间 的 数 量 关 系,并 说 明 理 由.【考 点】角 的 计 算;角 平 分 线 的 定 义.【专 题】线 段、角、相 交 线 与 平 行 线;运 算 能 力.【分 析】(1)利 用 余 角 与 角 平 分 线 的 定 义 来 运 算 即 可;(2)利 用 平 角 的 定 义 与 余 角 的 定 义 来 运 算 即 可;(3)利 用 余 角 和 平 角 以 及 角 平 分 线 的 定 义 来 运 算 即 可.【解 答】解:(1):ZAOD=90,N4OB=60,.NBOD=30,JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源 N
46、 C O Q=/B O Q=/B0C,A ZBOC=2ZBOD=60,VZBOC+ZCOE=180,A Z C 0 E=120;(2)V Z C 0 E=140,A Z B 0 C=180-ZCOE=40,./BOO NB0C=20,A ZAOE=70,(3),./AOB+/8Or=90,:.ZBOD=1ZBOC=90-N4OB,2A Z B O C=180-2ZAOB,ZBOC+ZCOE=SOQ,A Z C 0=180-Z B O C=180-(1800-2/402)=2ZAOB,S.iZCOE=2ZAOB.故 答 案 为:(1)120,(2)70,(3)NCOE=2NAOB.【点 评】本
47、题 考 查 的 是 角 的 和 与 差,解 题 关 键 是 仔 细 审 图,找 到 各 角 之 间 的 关 系,一 般 有 平 角、互 余、互 补 等 关 系.26.(2022春 将 乐 县 期 中)已 知/I,N 2(N 2 是 直 角),利 用 尺 规 求 作/A O C,使 得/4 0 C与 N 1 互 余.(要 求:不 得 直 接 作 在 原 图 上,保 留 作 图 痕 迹,不 写 作 法)【专 题】线 段、角、相 交 线 与 平 行 线;几 何 直 观.【分 析】根 据 作 一 个 角 等 于 已 知 角 的 方 法 分 别 作/A O 8=/2;在 N A O B的 内 部 再 作
48、 NCOB=N1 即 可.【解 答】解:如 图,先 作 N A 0 B=N 2;再 作 N C O 8=N 1;则/A O C 就 是 要 求 作 的 角,此 时 N 4 0 C 与 N 1互 余.不【点 评】本 题 考 查 互 为 余 角,理 解 互 为 余 角 的 定 义,掌 握 作 一 个 角 等 于 已 知 角 是 正 确 解 答 的 关 键.27.(2022春 江 都 区 期 中)如 图,将 正 方 形 纸 片 ABC。折 叠,使 点。落 在 8 C 边 点 E 处,点 A 落 在 点 尸 处,折 痕 为 M N,若 NNEC=32,求 N FM N的 大 小.【考 点】角 的 计
49、算.【专 题】矩 形 菱 形 正 方 形;展 开 与 折 叠;运 算 能 力;推 理 能 力.【分 析】根 据 正 方 形 的 性 质 得 到 NA=N C=N D=9 0,根 据 折 叠 的 性 质 得 到 N F=4JY E O O.co m瞽 优 网 专 注 中 小 学 教 育 资 源=90,N F E N=N C=90,N D N M=N E N M,根 据 平 角 的 定 义 得 到 N E N M=2(1802-NENC)=1(180-5 8)=61,根 据 四 边 形 的 内 角 和 即 可 得 到 结 论.2【解 答】解:;四 边 形 4 8 C D是 正 方 形,正 方 形
50、纸 片 ABC。折 叠,使 点。落 在 BC边 点 E 处,点 A 落 在 点 F 处,:.Z F=Z A=90,N D N M=N EN M,2 F E N=N D=9 0,:NNEC=32,:.N E N C=90-32=58,ZDNM=ZENM-yX(180-58)=61,ZFM N=360-90-9 0-61=119.【点 评】本 题 考 查 了 角 的 计 算,翻 折 变 换 的 问 题,折 叠 问 题 其 实 质 是 轴 对 称,对 应 线 段 相 等,对 应 角 相 等,找 到 相 等 的 角 是 解 决 本 题 的 关 键.28.(2022春 文 登 区 校 级 期 中)OM平