《中考数学专题复习加强练习——锐角三角函数.docx》由会员分享,可在线阅读,更多相关《中考数学专题复习加强练习——锐角三角函数.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考专题复习:锐角三角函数 (考试时间:60分钟 卷面满分:100)姓名 班级 成绩 一、 选择题:(本题共8小题,每小题5分,共40分)1(2020贵州黔西)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到AB的位置,已知AO的长为4米若栏杆的旋转角AOA,则栏杆A端升高的高度为()A米B4sin米C米D4cos米2如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是BAC,若tanBAC=,则此斜坡的水平距离AC为( )A75mB50mC30mD12m3.如图,两根竹竿AB和AD斜靠在墙CE上,量得ABC= , ADC= , 则竹竿AB与AD的长度之比为( )A.B.C.
2、D.4(2021山东济南)无人机低空遥感技术已广泛应用于农作物监测如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为的处测得试验田右侧出界处俯角为,无人机垂直下降至处,又测得试验田左侧边界处俯角为,则,之间的距离为(参考数据:,结果保留整数)()ABCD5小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35,再往前走3米站在C处,看路灯顶端O的仰角为65,则路灯顶端O到地面的距离约为(已知sin350.6,cos350.8,tan350.7,sin650.9,cos650.4,tan652.1)( )A3.2
3、米B3.9米C4.7米D5.4米6(2021重庆中考真题)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为,坡顶D到BC的垂直距离米(点A,B,C,D,E在同一平面内),在点D处测得建筑物顶A点的仰角为50,则建筑物AB的高度约为(参考数据:;)( )A69.2米B73.1米C80.0米D85.7米7(2021云南)在中,若,则的长是()ABC60D808(2020内蒙古赤峰市中考真题)如图,经过平面直角坐标系的原点O,交x轴于点B(-4,0),交y轴于点C(0,3),点D为第二象限内圆上一点.则CDO的正弦值是( )A B C D二、填空题:(本题共
4、5小题,每小题3分,共15分)9(2020广西河池)在RtABC中,C90,BC5,AC12,则sinB的值是_10在ABC中,C=90,tanA=,则cosB=_11.如图,将含有30角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,OAB60,点A的坐标为(1,0),将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60,再绕点C按顺时针方向旋转90,)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是_.12(2021浙江中考真题)如图,已知在中,则的值是_13(2022内蒙古通辽)如图,在矩形中,为上的点,则_ 三、 解答题:(
5、本题共3题,共45分解答应写出文字说明、证明过程或演算步骤)14(2022贵州铜仁)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C、D两处实地测量,如图所示在C处测得桥墩顶部A处的仰角为和桥墩底部B处的俯角为,在D处测得桥墩顶部A处的仰角为,测得C、D两点之间的距离为,直线、在同一平面内,请你用以上数据,计算桥墩的高度(结果保留整数,参考数据:)15为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制中小学楼梯宽度的范围是260mm300mm含(300mm),高度的范围是120mm150mm(含150mm)如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂
6、直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,ACD=65,试问该中学楼梯踏步的宽度和高度是否符合规定(结果精确到1mm,参考数据:sin650.906,cos650.423)16.如图,四边形ABCD中,AB=AD=CD,以AB为直径的O经过点C,连接AC,OD交于点E(1)证明:ODBC;(2)若tanABC=2,证明:DA与O相切;(3)在(2)条件下,连接BD交于O于点F,连接EF,若BC=1,求EF的长参考答案:1.B 2.A 3.B 4.C 5.C 6.D 7.D 8.A 9.10.11.12.13.#14.103米15.如图,连接BD,作DMAB于点M,AB
7、=CD,AB,CD分别垂直平分踏步EF,GH,ABCD,AB=CD,四边形ABDC是平行四边形,C=ABD,AC=BD,C=65,AC=900,ABD=65,BD=900,BM=BDcos65=9000.423381,DM=BDsin65=9000.906815,3813=127,120127150,该中学楼梯踏步的高度符合规定,8153272,260272300,该中学楼梯踏步的宽度符合规定,16.解:(1)连接OC,在OAD和OCD中,OADOCD(SSS),ADO=CDO,又AD=CD,DEAC,AB为O的直径,ACB=90,ACB=90,即BCAC,ODBC;(2)tanABC=2,设
8、BC=A.则AC=2a,AD=AB=,OEBC,且AO=BO,OE=BC=a,AE=CE=AC=a,在AED中,DE=2a,在AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,AO2+AD2=OD2,OAD=90,则DA与O相切;(3)连接AF,AB是O的直径,AFD=BAD=90,ADF=BDA,AFDBAD,=,即DFBD=AD2,又AED=OAD=90,ADE=ODA,AEDOAD,=,即ODDE=AD2,由可得DFBD=ODDE,即=,又EDF=BDO,EDFBDO,BC=1,AB=AD=、OD=、ED=2.BD=、OB=,=,即=,解得:EF=学科网(北京)股份有限公司