《2020-2021学年广东省江门市七年级(下)期末数学试卷(附答案详解).pdf》由会员分享,可在线阅读,更多相关《2020-2021学年广东省江门市七年级(下)期末数学试卷(附答案详解).pdf(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2020-2021学年广东省江门市七年级(下)期末数学试卷一、选 择 题(本大题共10小题,共30.0分)1.在平面直角坐标系中,点P(-2,-1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列各数中是无理数的是()A.V3 B.V4 C.1 D.3.141593.不等式仁;):。的解集在数轴上表示正确的是()A.1 1 1-1-1-L_.-3-2-1 0 1 2 3B.一 _ _ _ _ _ 1 一3 一2-1 0 1 2 3-3-2-10123D._|_ i _ I I-3-2-1 0 1 2 34.下列图形中,可以由其中一个图形通过平移得到的是()-OB 三 户5.
2、如图,某学校九年级(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.22B.32C.58D.687.已知;=:2是方程7 n%+3y=6的一个解,则?n的值为()A.3 B.4 C.5 D.68.下列说法正确的是()A.4的平方根是2 B.-9的平方根是-3C.-5是25的算术平方根 D.0的平方根是09.已知关于的不等式组:1 1的解集为久一1,则a的取值范围是()A.a -1B.a 110.如图,在平面直角坐标系中,已知点4(2,1),8(1,1),C(1,一3),。(2,-3),点P从点4出发,以每秒1个单位长度的速
3、度沿Z 的规律在四边形4BCD的边上循环运动,则第2021秒时点P的坐标为()A.(0,1)D.a -1B.(-1,1)C.(-1,0)D.(-1,-1)二、填 空 题(本大题共7小题,共28.0分)11.27的 立 方 根 为.12.如图,与Z1是 同 位 角 的 为.13.点P(l,-3)向上平移2个单位长度,得到点P的坐标为14.已知x+2y=1,则用x表示y的式子是y=.15.一个正数的平方根分别是x+1和2x 5,贝k=.第2页,共15页16.已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a 的值为.17.已 知 方 程 组+二1的解满足x为
4、非正数,y 为负数,则m 的取值范围是X V L 5771三、解 答 题(本大题共8 小题,共 62.0分)18.计 算:7(-1)2+|1-V 5|-J +(5V 5-3V 5).19.解方程组:20.如图,N4BC内有一点P,利用字词和三角板画出图形.(1)过点P画PD4 8 交BC于点D,画PE8 c 交4B于点E;(2)若NABC=5 5 ,则4BEP度数为2%+1 0)秒,是否存在这样的t使,OC P=SAQ?若存在,请求出t的值;若不存在,请说明理由.25.某商场的运动服装专柜,对4 B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情
5、况如表:第4页,共15页第一次第二次4 品牌运动服装数/件2030B品牌运动服装数/件3040累计采购款/元880012400(1)问4 B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于4 品牌,商家决定采购B品牌的件数比4 品牌件数的|倍还多5件,在采购总价不超过19800元的情况下,最多能购进多少件B 品牌运动服?答案和解析1.【答案】c【解析】解:2 0,1 0,故点P在第三象限.故选:C.由各个象限的坐标特征判断即可得出答案.本题考查了点的坐标的知识,比较简单,注意掌握各个象限的坐标特征是关键.2.【答案】A【解析】解:4、遮是无理数,故此选项符合题意;B、=
6、2,2是整数,属于有理数,故此选项不符合题意;C、|是分数,属于有理数,故此选项不符合题意;。、3.14159是有限小数,属于有理数,故此选项不符合题意.故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如兀,V6,0.8080080008.(每两个8之间依次多1个0)等形式.3.【答案】C【解析】解:不等式组卜一 2 U,x 2,由得:x -1,不等式组无解.-3-2-1 0 1 2 3故选:C.分别求出不等式中两不等式的解集,找出两解集的公共部分,表示在数轴上即可.此题考查了解一元一次不等式组,以及在
7、数轴上表示不等式组的解集,熟练掌握不等式组的解法是解本题的关键.第 6 页,共 15页4.【答案】B【解析】解:.只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故 选:B.根据平移的性质,结合图形对选项进行一一分析,选出正确答案.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.5.【答案】B【解析】解:观察频数直方图可得,人数最多的一组是4-6小时,故 选:B.观察频数直方图,可得人数最多的一组.此题考查了频数(率)分布直方图,以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.【答
8、案】A【解析】解:根据题意可知,42=43,41+42=90,42=90-Z 1 =22.故选:A.根据两直线平行,同位角相等及余角的定义作答即可.此题考查了平行线的性质.熟练掌握两直线平行,同位角相等定理是解此题的关键.7.【答案】B【解析】解:把肩二I2 代 入 方 程+3y=6,得3ni+3 x(-2)=6.:.3 m=12.m=4.故选:B.根据方程解的定义,把解代入方程得关于m的二元一次方程,求解即可.本题考查了方程解的定义,掌握二元一次方程的解是解决本题的关键.8.【答案】D【解析】解:4 4的平方根是 2,因此选项A不符合题意;A-9没有平方根,因此选项B不符合题意;C.-5是2
9、5的一个平方根,因此选项C不符合题意;DO的平方根是0,因此选项。符合题意;故选:D.根据平方根、算术平方根的定义进行判断即可.本题考查平方根、算术平方根,理解平方根、算术平方根的定义是正确判断的前提.9.【答案】B【解析】解:根据同大取大得:。一1,当a=-1时也符合题意,*C L 三-1.故选:B.根据同大取大得:a-l,当a=-1时也符合题意,从而得出答案.本题考查了不等式的解集,掌握同大取大,同小取小,大小小大中间找,大大小小无解集是解题的关键.10.【答案】D【解析】解:由点4(2,1),C(-l,-3),D(2,-3),可知ABCD是长方形,AB=CD=3,CB=AD=4,二 点P
10、从点4出发沿着4-B-C-0回到点4所走路程是:3+3+4+4=14,2021+14=144余 5,.第2021秒时P点在第三象限,故选:D.由点可得ABCD是长方形,点P从点A出发沿着回到点4所走路程是1 4,即每过14秒点P回到4点一次,判断2021 14的余数就是可知点P的位置.本题考查动点运动,探索规律,平面内点的坐标特点.能够找到点的运动每14秒回到起点的规律是解题的关键.1 I.【答案】3第8页,共15页【解析】【分析】本题考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.找到立方等于27的数即可.【解答】解:v 33=27,27的立方根是3.故答案为3.12.【答案】
11、44【解析】解:如图,与 是 同 位 角 的 为:44,故答案为:44.根据同位角的特征,“F”型判断即可.本题考查了同位角,内错角,同旁内角,熟练掌握它们的特征是解题的关键.13.【答案】(1,一1)【解析】解:点P(l,-3)向上平移2个单位长度,点 P的坐标是(1,3+2),即故答案为:(1,-1).利用点的平移方法可得答案.此题主要考查了坐标与图形的变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.14.【答案】y【解析】解:方程x+2y=l,解得:丫 =辞,故答案为:子.把x看作己知数求出y 即可.此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.15.
12、【答案【解析】解:根据题意得x +l +2 x -5 =0,解得:x =p故答案为:,根据正数的两个平方根互为相反数列出关于X的方程,解之可得X的值,进而可以求出这个数.本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.1 6.【答案】1或一 3【解析】解:平面直角坐标系内不同的两点4(3 a +2,4)和8(3,2 a+2)至狂轴的距离相等,二 1 2 a +2|=4,解得:ax=1,a2=3.故答案为:1或一3.由4、B两点到x轴的距离相等,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.本题考查了两点间的距离公式以及解含绝对值符号的一元一次方程,.
13、由4、B两点到x轴的距离相等找出关于a的含绝对值符号的一元一次方程是解题的关键.1 7.【答案】一:m W 4【解析】解:二 噌,(X y =1 +3m(2)+得:2 x =2 m 8,即 =m 4,得:2 y =-4 m -1 0,即y =-2m 5,根据题意得:(X4-5 0 解得:-g /5=3 V 5-|.【解析】直接利用二次根式的性质以及绝对值的性质分别化简,进而合并得出答案.此题主要考查了实数的运算,正确化简各数是解题关键.19.【答案】解::一等,(2x+y=3(2)+X 3得:7x=7,解得:x=1,把x=l 代入得:y=1,则方程组的解为旨Z 5.【解析】方程组利用加减消元法
14、求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】125【解析】解:(1)图形如图所示:A(2)v PEI IBC,乙BEP+LB=180,ZB=55,乙BEP=125,故答案为:125。.(1)根据要求画出图形即可;(2)利用平行线的性质求解即可.本题考查作图-复杂作图,平行线的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2 1.【答案】解:由2 x +l x +2,得:x 2,则不等式组的解集为-2 W x 1,它的整数解为一2、一1、0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小
15、小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟 知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2 2.【答案】解:1 8+2 0%=9 0(人),在线听课的学生有:9 0-2 4-1 8-1 2 =3 6(2)扇形统计图中“在线阅读”对应的扇形圆心角的度数为:3 6 0。x署=9 6。;(3)1 2 0 0 x=1 6 0(A),答:该校对“在线讨论”最感兴趣的学生人数约1 6 0人.【解析】(1)从两个统计图中可知,“在线答题”的有1 8人,占出人数的2 0%,根据频率=粤可求出调查人数;再求
16、出在线听课的学生人数,进而补全条形统计图;(2)用3 6 0。乘“在线阅读”所占比例即可;(3)求出样本中“在线讨论”所占的百分比,估计总体中“在线讨论”所占的百分比,进而求出相应的人数.第12页,共15页本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】(1)证明:NCED=4GH0,A CE/GF,Z.CEF+Z-EFG=180,v zC=Z-EFG f Z.CEF 4-Z-C=180,:.AB I/CD;(2)解:乙DHG=Z-EHF=8 3 ,乙D=40,A ZCGF=83 4-40=123,CE/GF,乙C+乙CGF=18
17、0,ZC=180-123=57,-AB/CD,Z.AEC=ZC=57,Z.AEM=180-AAEC=180-57=123.【解析】(1)根据同位角相等两直线平行,可证CEG F,进而利用平行线的性质和判定证明;(2)根据对顶角相等可求N D H G,根据三角形外角的性质可求4 C G F,根据平行线的性质可得4 C,乙A E C,再根据邻补角的定义可求乙4EM的度数.本题考查了平行线的判定和性质,三角形外角的性质,邻补角的定义,平行线的性质有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;平行线的性质有:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.
18、24.【答案】(0,12)(6,0)【解析】解:(1)Va-2fe+|b-6|=0,:.7a-2b-0,b-6=0,解得:a=12,b=6,二点4 的坐标为(0,1 2),点B的坐标为(6,0),故答案为:(0,12),(6,0);(2)点4 的坐标为(0,1 2),点B的坐标为(6,0),OB=6,OA=1 2,1i SAOB=5 O B 0 4 =5 X 6 x 1 2 =3 6;(3)存在,由题意得:BP=t,OQ=2t,则O P =6-3Socp=SAOCQ,.-.1 t x 3=|(6-t)x 6,解得:t =4,二当t =4 时,S4OCP=S&OCQ-(1)根据算术平方根和绝对值
19、的非负性分别求出a、b,得到点A、8 的坐标;(2)根据三角形的面积公式计算即可;(3)根据题意用t 分别表示出O P、0 Q,根据三角形面积公式列出方程,解方程得到答案.本题考查的是三角形的面积计算、非负数的性质,根据非负数的性质分别求出a、b 是解题的关键.2 5.【答案】解:(1)设4 品牌运动服装的进货单价是x 元,B 品牌运动服装的进货单价是y 元,依题意得:隙捣:舐。,解得:J:1 6 O-答:4 品牌运动服装的进货单价是200元,B 品牌运动服装的进货单价是1 6 0元.(2)设购进m件4 品牌运动服,则购进(|m +5)件4 品牌运动服,依题意得:200m +1 6 0m+5)
20、W 1 98 00,解得:机 等,4又m,(|m +5)均为整数,讥的最大值为42,|m +5的最大值为|x 42+5=6 8.答:最多能购进6 8 件B 品牌运动服.【解析】(1)设4 品牌运动服装的进货单价是x 元,B 品牌运动服装的进货单价是y 元,利用进货总价=进货单价x 进货数量,即可得出关于x,y 的二元一次方程组,解之即可得第1 4页,共1 5页出结论;(2)设购进m件A品牌运动服,则购进(|m+5)件4品牌运动服,利用进货总价=进货单价x进货数量,即可得出关于沉的一元一次不等式,解之即可得出小的取值范围,再结合m,(|m+5)均为整数,即可得出m的最大值,再将其代入(|m+5)中即可求出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.