《哥尼斯堡七桥问题模型应用.pdf》由会员分享,可在线阅读,更多相关《哥尼斯堡七桥问题模型应用.pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【模型应用】例 1 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(a)图:可以一笔画,因为只有两个奇点 A、B;画法为 A 头部翅膀尾部翅膀嘴。(b)图:不能一笔画,因为此图不是连通图。(c)图:不能一笔画,因图中有四个奇点:A、B、C、D。(d)图:不能一笔画,因为此图不是连通图。(e)图:可以一笔画,因为没有奇点;画法可以是:A B C DE F G H I J B D F H J A。(f)图:不能一笔画出,因为图中有八个奇点。注意:在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个
2、奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点。例 2 下图是国际奥委会的会标,你能一笔把它画出来吗?一个图能否一笔画出,关键取决于这个图中奇点的个数.通过观察可以发现,上图中所有的结点都是偶点,因此,这个图可以一笔画出.画时可以任一结点作为起点。例 3 下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?这种应用题,表面看起来不易解决,事实上,只要认真分析,就可以发现:我们并不关心展室的大小以及路程的远近,关心的只是能否一次不重复地走遍所有的门,与七
3、桥问题较为类似.因此,仿照七桥问题的解法,我们可以把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从 A 出发,一笔画完此图,最后再回到 A。上图(b)中,所有的结点都是偶点,因此,一定可以以 A 作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A E B C E F C D F A。注意:本题中,必须以 A 分别作为起点和终点.这就要求图中必须没有奇点,否则,若有两个奇点,虽能一笔画出,但与从入口入、出口出(即游人的出发和终止点都在展厅外)有矛盾,其他有多个奇点的情况则根本不可能一笔画出。另外,通过前面的学习,大家已经知道:一个图如果能够一笔画出,则画的方法不止一种,但各种方法大同小异.因此,一般我们只给出一种画法。