《2017年浙江省舟山市中考数学试卷6112.pdf》由会员分享,可在线阅读,更多相关《2017年浙江省舟山市中考数学试卷6112.pdf(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、修正版 2017 年浙江省舟山市中考数学试卷 一、选择题:1(3 分)2 的绝对值是()A2 B2 C D 2(3 分)长度分别为 2,7,x 的三条线段能组成一个三角形,x 的值可以是()A4 B5 C6 D9 3(3 分)已知一组数据 a,b,c 的平均数为 5,方差为 4,那么数据 a2,b2,c2 的平均数和方差分别是()A3,2 B3,4 C5,2 D5,4 4(3 分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中 B考 C顺 D利 5(3 分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是输,所以红红
2、胜的概率为 B红红胜或娜娜胜的概率相等 C两人出相同手势的概率为 D娜娜胜的概率和两人出相同手势的概率一样 修正版 6(3 分)若二元一次方程组的解为,则 ab=()A1 B3 C D 7(3 分)如图,在平面直角坐标系 xOy 中,已知点 A(,0),B(1,1)若平移点 A 到点 C,使以点 O,A,C,B 为顶点的四边形是菱形,则正确的平移方法是()A向左平移 1 个单位,再向下平移 1 个单位 B向左平移(21)个单位,再向上平移 1 个单位 C向右平移个单位,再向上平移 1 个单位 D向右平移 1 个单位,再向上平移 1 个单位 8(3 分)用配方法解方程 x2+2x1=0 时,配方
3、结果正确的是()A(x+2)2=2 B(x+1)2=2 C(x+2)2=3 D(x+1)2=3 9(3 分)一张矩形纸片 ABCD,已知 AB=3,AD=2,小明按如图步骤折叠纸片,则线段 DG 长为()A B C1 D2 10(3 分)下列关于函数 y=x26x+10 的四个命题:当 x=0 时,y 有最小值 10;n 为任意实数,x=3+n 时的函数值大于 x=3n 时的函数值;若 n3,且 n 是整数,当 nxn+1 时,y 的整数值有(2n4)个;若函数图象过点(a,y0)和(b,y0+1),其中 a0,b0,则 ab 其中真命题的序号是()A B C D 修正版 二、填空题 11(4
4、 分)分解因式:abb2=12(4 分)若分式的值为 0,则 x 的值为 13(4 分)如图,小明自制一块乒乓球拍,正面是半径为 8cm 的O,=90,弓形 ACB(阴影部分)粘贴胶皮,则胶皮面积为 14(4 分)七(1)班举行投篮比赛,每人投 5 球如图是全班学生投进球数的扇形统计图,则投进球数的众数是 15(4 分)如图,把 n 个边长为 1 的正方形拼接成一排,求得 tanBA1C=1,tanBA2C=,tanBA3C=,计算 tanBA4C=,按此规律,写出 tanBAnC=(用含 n 的代数式表示)16(4 分)一副含 30和 45角的三角板 ABC 和 DEF 叠合在一起,边 BC
5、 与 EF 重合,BC=EF=12cm(如图 1),点 G 为边 BC(EF)的中点,边 FD 与 AB 相交于点 H,此时线段 BH 的长是 现将三角板 DEF 绕点 G 按顺时针方向旋转(如图修正版 2),在CGF 从 0到 60的变化过程中,点 H 相应移动的路径长共为 (结果保留根号)三、解答题 17(6 分)(1)计算:()221(4);(2)化简:(m+2)(m2)3m 18(6 分)小明解不等式1 的过程如图请指出他解答过程中错误步骤的序号,并写出正确的解答过程 19(6 分)如图,已知ABC,B=40(1)在图中,用尺规作出ABC 的内切圆 O,并标出O 与边 AB,BC,AC
6、 的切点 D,E,F(保留痕迹,不必写作法);(2)连接 EF,DF,求EFD 的度数 20(8 分)如图,一次函数 y=k1x+b(k10)与反比例函数 y=(k20)的图象交于点 A(1,2),B(m,1)修正版(1)求这两个函数的表达式;(2)在 x 轴上是否存在点 P(n,0)(n0),使ABP 为等腰三角形?若存在,求 n 的值;若不存在,说明理由 21(8 分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图 1,小明家去年月用电量如图 2 根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的
7、用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由 22(10 分)如图是小强洗漱时的侧面示意图,洗漱台(矩形 ABCD)靠墙摆放,高 AD=80cm,宽 AB=48cm,小强身高 166cm,下半身 FG=100cm,洗漱时下半身与地面成 80(FGK=80),身体前倾成 125(EFG=125),脚与洗漱台距离GC=15cm(点 D,C,G,K 在同一直线上)(1)此时小强头部 E 点与地面 DK 相距多少?(2)小强希望他的头部 E 恰好在洗漱盆 AB 的中点 O 的正上方
8、,他应向前或后修正版 退多少?(sin800.98,cos800.17,1.41,结果精确到 0.1)23(10 分)如图,AM 是ABC 的中线,D 是线段 AM 上一点(不与点 A 重合)DEAB 交 AC 于点 F,CEAM,连结 AE (1)如图 1,当点 D 与 M 重合时,求证:四边形 ABDE 是平行四边形;(2)如图 2,当点 D 不与 M 重合时,(1)中的结论还成立吗?请说明理由(3)如图 3,延长 BD 交 AC 于点 H,若 BHAC,且 BH=AM 求CAM 的度数;当 FH=,DM=4 时,求 DH 的长 24(12 分)如图,某日的钱塘江观测信息如下:修正版 按上
9、述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 s(千米)与时间 t(分钟)的函数关系用图 3 表示其中:“11:40 时甲地交叉潮的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c 是常数)刻画(1)求 m 值,并求出潮头从甲地到乙地的速度;(2)11:59 时,小红骑单车从乙地出发,沿江边公路以 0.48 千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为 0.48 千米/分,小红逐渐落后问小红与潮头相遇到落后潮头
10、1.8 千米共需多长时间?(潮水加速阶段速度 v=v0+(t30),v0是加速前的速度)修正版 2017 年浙江省舟山市中考数学试卷 参考答案与试题解析 一、选择题:1(3 分)(2017随州)2 的绝对值是()A2 B2 C D【分析】根据负数的绝对值等于它的相反数解答【解答】解:2 的绝对值是 2,即|2|=2 故选:A【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0 2(3 分)(2017舟山)长度分别为 2,7,x 的三条线段能组成一个三角形,x的值可以是()A4 B5 C6 D9【分析】已知三角形的两边长分别为 2 和 7,根据在三角
11、形中任意两边之和第三边,任意两边之差第三边;即可求第三边长的范围,再结合选项选择符合条件的【解答】解:由三角形三边关系定理得 72x7+2,即 5x9 因此,本题的第三边应满足 5x9,把各项代入不等式符合的即为答案 4,5,9 都不符合不等式 5x9,只有 6 符合不等式,故选:C【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可 3(3 分)(2017舟山)已知一组数据 a,b,c 的平均数为 5,方差为 4,那么数据 a2,b2,c2 的平均数和方差分别是()修正版 A3,2 B3,4 C5,2 D5,4【分析】根据数
12、据 a,b,c 的平均数为 5 可知(a+b+c)=5,据此可得出(a2+b2+c2)的值;再由方差为 4 可得出数据 a2,b2,c2 的方差【解答】解:数据 a,b,c 的平均数为 5,(a+b+c)=5,(a2+b2+c2)=(a+b+c)2=52=3,数据 a2,b2,c2 的平均数是 3;数据 a,b,c 的方差为 4,(a5)2+(b5)2+(c5)2=4,a2,b2,c2 的方差=(a23)2+(b23)2+(c23)2=(a5)2+(b5)2+(c5)2=4 故选 B【点评】本题考查的是方差,熟记方差的定义是解答此题的关键 4(3 分)(2017舟山)一个立方体的表面展开图如图
13、所示,将其折叠成立方体后,“你”字对面的字是()A中 B考 C顺 D利【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面 故选 C 修正版【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题 5(3 分)(2017舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是输,所以红红胜的概率为 B红红胜或娜娜胜的概率相等 C两人出相同手势的概率为 D
14、娜娜胜的概率和两人出相同手势的概率一样【分析】利用列表法列举出所有的可能,进而分析得出答案【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下:红红 娜娜 锤子 剪刀 布 锤子(锤子,锤子)(锤子,剪刀)(锤子,布)剪刀(剪刀,锤子)(剪刀,剪刀)(剪刀,布)布(布,锤子)(布,剪刀)(布,布)由表格可知,共有 9 种等可能情况其中平局的有 3 种:(锤子,锤子)、(剪刀,剪刀)、(布,布)因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项 A 符合题意,故选项 B,C,D 不合题意;修正版 故选:A【点评】此题
15、主要考查了列表法求概率,根据题意正确列举出所有可能是解题关键 6(3 分)(2017舟山)若二元一次方程组的解为,则 ab=()A1 B3 C D【分析】将两式相加即可求出 ab 的值【解答】解:x+y=3,3x5y=4,两式相加可得:(x+y)+(3x5y)=3+4,4x4y=7,xy=,x=a,y=b,ab=xy=故选(D)【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出 ab 的值,本题属于基础题型 7(3 分)(2017舟山)如图,在平面直角坐标系 xOy 中,已知点 A(,0),B(1,1)若平移点 A 到点 C,使以点 O,A,C,B 为顶点的四边形是菱形
16、,则正确的平移方法是()A向左平移 1 个单位,再向下平移 1 个单位 B向左平移(21)个单位,再向上平移 1 个单位 C向右平移个单位,再向上平移 1 个单位 修正版 D向右平移 1 个单位,再向上平移 1 个单位【分析】过点 B 作 BHOA,交 OA 于点 H,利用勾股定理可求出 OB 的长,进而可得点 A 向左或向右平移的距离,由菱形的性质可知 BCOA,所以可得向上或向下平移的距离,问题得解【解答】解:过 B 作射线 BCOA,在 BC 上截取 BC=OA,则四边形 OACB 是平行四边形,过 B 作 BHx 轴于 H,B(1,1),OB=,A(,0),C(1+,1)OA=OB,则
17、四边形 OACB 是菱形,平移点 A 到点 C,向右平移 1 个单位,再向上平移 1 个单位而得到,故选 D 【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;8(3 分)(2017舟山)用配方法解方程 x2+2x1=0 时,配方结果正确的是()A(x+2)2=2 B(x+1)2=2 C(x+2)2=3 D(x+1)2=3【分析】把左边配成一个完全平方式,右边化为一个常数,判断出配方结果正确的是哪个即可【解答】解:x2+2x1=0,x2+2x+1=2,修正版(x+1)2=2 故选:B【点评】此题主要考查了配方
18、法在解一元二次方程中的应用,要熟练掌握 9(3 分)(2017舟山)一张矩形纸片 ABCD,已知 AB=3,AD=2,小明按如图步骤折叠纸片,则线段 DG 长为()A B C1 D2【分析】首先根据折叠的性质求出 DA、CA和 DC的长度,进而求出线段 DG 的长度【解答】解:AB=3,AD=2,DA=2,CA=1,DC=1,D=45,DG=DC=,故选 A【点评】本题主要考查了翻折变换以及矩形的性质,解题的关键是求出 DC的长度 10(3 分)(2017舟山)下列关于函数 y=x26x+10 的四个命题:当 x=0 时,y 有最小值 10;n 为任意实数,x=3+n 时的函数值大于 x=3n
19、 时的函数值;若 n3,且 n 是整数,当 nxn+1 时,y 的整数值有(2n4)个;若函数图象过点(a,y0)和(b,y0+1),其中 a0,b0,则 ab 其中真命题的序号是()A B C D【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物修正版 线的增减性对各选项进行逐一分析【解答】解:y=x26x+10=(x3)2+1,当 x=3 时,y 有最小值 1,故错误;当 x=3+n 时,y=(3+n)26(3+n)+10,当 x=3n 时,y=(n3)26(n3)+10,(3+n)26(3+n)+10(n3)26(n3)+10=0,n 为任意实数,x=3+n 时的函数
20、值等于 x=3n 时的函数值,故错误;抛物线 y=x26x+10 的对称轴为 x=3,a=10,当 x3 时,y 随 x 的增大而增大,当 x=n+1 时,y=(n+1)26(n+1)+10,当 x=n 时,y=n26n+10,(n+1)26(n+1)+10n26n+10=2n4,n 是整数,2n4 是整数,故正确;抛物线 y=x26x+10 的对称轴为 x=3,10,当 x3 时,y 随 x 的增大而增大,x0 时,y 随 x 的增大而减小,y0+1y0,当 0a3,0b3 时,ab,当 a3,b3 时,ab,当 0a3,b3 时,ab,当 0a3,b3 时,ab,故是假命题故选 C【点评】
21、本题主要考查了二次函数的意义,性质,图象,能够根据二次函数的性质数形结合是解决问题的关键 二、填空题 11(4 分)(2017淮安)分解因式:abb2=b(ab)【分析】根据提公因式法,可得答案【解答】解:原式=b(ab),故答案为:b(ab)【点评】本题考查了因式分解,利用提公因式法是解题关键 12(4 分)(2017舟山)若分式的值为 0,则 x 的值为 2 修正版【分析】根据分式的值为零的条件可以得到,从而求出 x 的值【解答】解:由分式的值为零的条件得,由 2x4=0,得 x=2,由 x+10,得 x1 综上,得 x=2,即 x 的值为 2 故答案为:2【点评】本题考查了分式的值为零的
22、条件若分式的值为零,需同时具备两个条件:(1)分子为 0;(2)分母不为 0这两个条件缺一不可 13(4 分)(2017舟山)如图,小明自制一块乒乓球拍,正面是半径为 8cm 的O,=90,弓形 ACB(阴影部分)粘贴胶皮,则胶皮面积为(32+48)cm2 【分析】连接 OA、OB,根据三角形的面积公式求出 SAOB,根据扇形面积公式求出扇形 ACB 的面积,计算即可【解答】解:连接 OA、OB,=90,AOB=90,SAOB=88=32,扇形 ACB(阴影部分)=48,则弓形 ACB 胶皮面积为(32+48)cm2,故答案为:(32+48)cm2 修正版 【点评】本题考查的是扇形面积的计算,
23、掌握扇形面积公式是解题的关键 14(4 分)(2017舟山)七(1)班举行投篮比赛,每人投 5 球如图是全班学生投进球数的扇形统计图,则投进球数的众数是 3 球 【分析】根据众数的定义及扇形统计图的意义即可得出结论【解答】解:由图可知,3 球所占的比例最大,投进球数的众数是 3 球 故答案为:3 球【点评】本题考查的是扇形统计图,熟知扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数是解答此题的关键 15(4 分)(2017舟山)如图,把 n 个边长为 1 的正方形拼接成一排,求得 tanBA1C=1,tanBA2C=,tanBA3C=,计算 tanBA4C=,按此
24、规律,写出 tanBAnC=(用含 n 的代数式表示)修正版【分析】作 CHBA4于 H,根据正方形的性质、勾股定理以及三角形的面积公式求出 CH、A4H,根据正切的概念求出 tanBA4C,总结规律解答【解答】解:作 CHBA4于 H,由勾股定理得,BA4=,A4C=,BA4C 的面积=42=,CH=,解得,CH=,则 A4H=,tanBA4C=,1=121+1,3=222+1,7=323+1,tanBAnC=,故答案为:;【点评】本题考查的是正方形的性质、勾股定理的应用以及正切的概念,掌握正方形的性质、熟记锐角三角函数的概念是解题的关键 16(4 分)(2017舟山)一副含 30和 45角
25、的三角板 ABC 和 DEF 叠合在一起,边 BC 与 EF 重合,BC=EF=12cm(如图 1),点 G 为边 BC(EF)的中点,边 FD 与AB 相交于点 H,此时线段 BH 的长是(1212)cm 现将三角板 DEF 绕点 G 按顺时针方向旋转(如图 2),在CGF 从 0到 60的变化过程中,点 H 相应移动的路径长共为(1218)cm (结果保留根号)修正版 【分析】如图 1 中,作 HMBC 于 M,设 HM=CM=a 在 RtBHM 中,BH=2HM=2a,BM=a,根据 BM+MF=BC,可得a+a=12,推出 a=66,推出 BH=2a=1212如图 2 中,当 DGAB
26、 时,易证 GH1DF,此时 BH1的值最小,易知BH1=BK+KH1=3+3,当旋转角为 60时,F 与 H2重合,易知 BH2=6,观察图象可知,在CGF 从 0到 60的变化过程中,点 H 相应移动的路径长=2HH1+HH2,由此即可解决问题【解答】解:如图 1 中,作 HMBC 于 M,设 HM=a,则 CM=HM=a 在 RtABC 中,ABC=30,BC=12,在 RtBHM 中,BH=2HM=2a,BM=a,BM+FM=BC,a+a=12,a=66,BH=2a=1212 如图 2 中,当 DGAB 时,易证 GH1DF,此时 BH1的值最小,易知BH1=BK+KH1=3+3,修正
27、版 HH1=BHBH1=915,当旋转角为 60时,F 与 H2重合,易知 BH2=6,观察图象可知,在CGF 从 0到 60的变化过程中,点 H 相应移动的路径长=2HH1+HH2=1830+6(1212)=1218 故答案为(1212)cm,(1218)cm【点评】本题考查轨迹、旋转变换、解直角三角形、锐角三角函数等知识,解题的关键是正确寻找点 H 的运动轨迹,属于中考常考题型 三、解答题 17(6 分)(2017舟山)(1)计算:()221(4);(2)化简:(m+2)(m2)3m【分析】(1)首先计算乘方和负指数次幂,计算乘法,然后进行加减即可;(2)首先利用平方差公式和单项式的乘法法
28、则计算,最后合并同类项即可【解答】解:(1)原式=3(4)=3+2=5;(2)原式=m24m2=4【点评】本题考查了实数的运算以及整式的混合运算,正确理解乘法公式是关键 18(6 分)(2017舟山)小明解不等式1 的过程如图请指出他解答过程中错误步骤的序号,并写出正确的解答过程 修正版 【分析】根据一元一次不等式的解法,找出错误的步骤,并写出正确的解答过程即可【解答】解:错误的是,正确解答过程如下:去分母,得 3(1+x)2(2x+1)6,去括号,得 3+3x4x26,移项,得 3x4x63+2,合并同类项,得x5,两边都除以1,得 x5【点评】本题考查了解一元一次不等式,熟练掌握解一元一次
29、不等式的解法及步骤是解题的关键 19(6 分)(2017舟山)如图,已知ABC,B=40(1)在图中,用尺规作出ABC 的内切圆 O,并标出O 与边 AB,BC,AC 的切点 D,E,F(保留痕迹,不必写作法);(2)连接 EF,DF,求EFD 的度数 【分析】(1)直接利用基本作图即可得出结论;(2)利用四边形的性质,三角形的内切圆的性质即可得出结论【解答】解:(1)如图 1,修正版 O 即为所求(2)如图 2,连接 OD,OE,ODAB,OEBC,ODB=OEB=90,B=40,DOE=140,EFD=70【点评】此题主要考查了基本作图,三角形的内切圆的性质,四边形的内角和公式,解本题的关
30、键是作出三角形的内切圆 20(8 分)(2017舟山)如图,一次函数 y=k1x+b(k10)与反比例函数 y=(k20)的图象交于点 A(1,2),B(m,1)(1)求这两个函数的表达式;(2)在 x 轴上是否存在点 P(n,0)(n0),使ABP 为等腰三角形?若存在,求 n 的值;若不存在,说明理由 修正版 【分析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论当 PA=PB 时,可得(n+1)2+4=(n2)2+1当 AP=AB时,可得 22+(n+1)2=(3)2当 BP=BA 时,可得 12+(n2)2=(3)2分别解方程即可解决问题;【解答】解:(1)把 A(1,2)代入
31、 y=,得到 k2=2,反比例函数的解析式为 y=B(m,1)在 Y=上,m=2,由题意,解得,一次函数的解析式为 y=x+1 (2)A(1,2),B(2,1),AB=3,当 PA=PB 时,(n+1)2+4=(n2)2+1,n=0,n0,n=0 不合题意舍弃 当 AP=AB 时,22+(n+1)2=(3)2,n0,n=1+当 BP=BA 时,12+(n2)2=(3)2,n0,n=2+修正版 综上所述,n=1+或 2+【点评】本题考查反比例函数综合题一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用 分类讨论的思想思考问题,属于中考常考题型
32、21(8 分)(2017舟山)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图 1,小明家去年月用电量如图 2 根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由【分析】(1)由每月的平均气温统计图和月用电量统计图直接回答即可;(2)结合生活实际经验回答即可;(3)能,由中位数的特点回答即可【解答】解:(1)由统计图可知:月平均气温最高值为
33、 30.6,最低气温为 5.8;相应月份的用电量分别为 124 千瓦时和 110 千瓦时(2)当气温较高或较低时,用电量较多;当气温适宜时,用电量较少;(3)能,因为中位数刻画了中间水平 修正版【点评】本题考查的是条形统计图的综合运用 读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据 22(10 分)(2017舟山)如图是小强洗漱时的侧面示意图,洗漱台(矩形 ABCD)靠墙摆放,高 AD=80cm,宽 AB=48cm,小强身高 166cm,下半身 FG=100cm,洗漱时下半身与地面成 80(FGK=80),身体前倾成 125(EFG=125),脚与洗
34、漱台距离 GC=15cm(点 D,C,G,K 在同一直线上)(1)此时小强头部 E 点与地面 DK 相距多少?(2)小强希望他的头部 E 恰好在洗漱盆 AB 的中点 O 的正上方,他应向前或后退多少?(sin800.98,cos800.17,1.41,结果精确到 0.1)【分析】(1)过点 F 作 FNDK 于 N,过点 E 作 EMFN 于 M求出 MF、FN 的值即可解决问题;(2)求出 OH、PH 的值即可判断;【解答】解:(1)过点 F 作 FNDK 于 N,过点 E 作 EMFN 于 M EF+FG=166,FG=100,EF=66,FGK=80,FN=100sin8098,EFG=
35、125,EFM=18012510=45,FM=66cos45=3346.53,MN=FN+FM144.5,修正版 此时小强头部 E 点与地面 DK 相距约为 144.5cm (2)过点 E 作 EPAB 于点 P,延长 OB 交 MN 于 H AB=48,O 为 AB 中点,AO=BO=24,EM=66sin4546.53,PH46.53,GN=100cos8017,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前 9.5cm 【点评】本题考查直角三角形的应用,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考
36、常考题型 23(10 分)(2017舟山)如图,AM 是ABC 的中线,D 是线段 AM 上一点(不与点 A 重合)DEAB 交 AC 于点 F,CEAM,连结 AE (1)如图 1,当点 D 与 M 重合时,求证:四边形 ABDE 是平行四边形;修正版(2)如图 2,当点 D 不与 M 重合时,(1)中的结论还成立吗?请说明理由(3)如图 3,延长 BD 交 AC 于点 H,若 BHAC,且 BH=AM 求CAM 的度数;当 FH=,DM=4 时,求 DH 的长【分析】(1)只要证明 AE=BM,AEBM 即可解决问题;(2)成立如图 2 中,过点 M 作 MGDE 交 CE 于 G由四边形
37、 DMGE 是平行四边形,推出 ED=GM,且 EDGM,由(1)可知 AB=GM,ABGM,可知 ABDE,AB=DE,即可推出四边形 ABDE 是平行四边形;(3)如图 3 中,取线段 HC 的中点 I,连接 MI,只要证明 MI=AM,MIAC,即可解决问题;设 DH=x,则 AH=x,AD=2x,推出 AM=4+2x,BH=4+2x,由四边形 ABDE 是平行四边形,推出 DFAB,推出=,可得=,解方程即可;【解答】(1)证明:如图 1 中,DEAB,EDC=ABM,CEAM,ECD=ADB,AM 是ABC 的中线,且 D 与 M 重合,BD=DC,ABDEDC,AB=ED,ABED
38、,四边形 ABDE 是平行四边形 修正版(2)结论:成立理由如下:如图 2 中,过点 M 作 MGDE 交 CE 于 G CEAM,四边形 DMGE 是平行四边形,ED=GM,且 EDGM,由(1)可知 AB=GM,ABGM,ABDE,AB=DE,四边形 ABDE 是平行四边形 (3)如图 3 中,取线段 HC 的中点 I,连接 MI,BM=MC,MI 是BHC 的中位线,MIBH,MI=BH,BHAC,且 BH=AM MI=AM,MIAC,修正版 CAM=30 设 DH=x,则 AH=x,AD=2x,AM=4+2x,BH=4+2x,四边形 ABDE 是平行四边形,DFAB,=,=,解得 x=
39、1+或 1(舍弃),DH=1+【点评】本题考查四边形综合题、平行四边形的判定和性质、直角三角形 30 度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考压轴题 24(12 分)(2017舟山)如图,某日的钱塘江观测信息如下:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 s(千米)与时间 t(分钟)的函数关系用图 3 表示其中:“11:40 时甲地交叉潮的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数:s=t2+bt+c(b,c 是常数)刻画(1)求 m 值,并求出潮头从甲地
40、到乙地的速度;修正版(2)11:59 时,小红骑单车从乙地出发,沿江边公路以 0.48 千米/分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为 0.48 千米/分,小红逐渐落后问小红与潮头相遇到落后潮头 1.8 千米共需多长时间?(潮水加速阶段速度 v=v0+(t30),v0是加速前的速度)【分析】(1)根据起始时间结合到达乙地时间,即可求出 m 值,再根据速度=路程时间,即可求出潮头从甲地到乙地的速度;(2)根据小红出发时间结合路程=速度时间,可求出此时潮头离乙地的距离,再根据时间=路程二
41、者速度和即可求出小红需多长时间与潮头相遇;(3)根据点 B、C 的坐标利用待定系数法可求出二次函数解析式,令潮头的速度=小红的最高速度,可求出小红开始落后的时间,利用二次函数图象上点的坐标特征可求出此时潮头离开乙地的距离,再根据潮头离乙地的距离小红离乙地的距离=1.8 千米,即可求出 t 值,用其减去 25 即可得出结论【解答】解:(1)12 时 10 分11 时 40 分=30 分,1230=0.4(千米/分)答:m 的值为 30,m 的值为 30潮头从甲地到乙地的速度为 0.4 千米/分(2)0.4(30+4059)=4.4(千米),4.4(0.4+0.48)=5(分钟)答:小红出发五分钟
42、后与潮头相遇(3)将 B(30,0)、C(55,15)代入 s=t2+bt+c 中,得:,解得:,曲线 BC 的函数关系式为 s=t2t 令 0.4+(t30)=0.48,解得:t=35,当 t=35 时,s=t2t=2.2 修正版 根据题意得:t2t0.48(t35)2.2=1.8,整理得:t270t+1000=0,解得:t=50 或 t=20(不合题意,舍去),5030+5=25(分钟),小红与潮头相遇到落后潮头 1.8 千米共需 25 分钟【点评】本题考查了二次函数的应用、待定系数法求二次函数解析式、二次函数图象上点的坐标特征以及解一元二次方程,解题的关键是:(1)根据数量关系,列式计算;(2)求出小红出发时潮头离乙地的距离;(3)根据二者相距 1.8 千米,列出关于 t 的一元二次方程