《教育专题:28.2 解直角三角形3.ppt》由会员分享,可在线阅读,更多相关《教育专题:28.2 解直角三角形3.ppt(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.测量高度时,仰角与俯角有何区别?2.解答下面的问题 如图,有两建筑物,在甲建筑物上从A到E点挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为45,条幅底端E点的俯角为30.求甲、乙两建筑物之间的水平距离BCAEDCB利用解直角三角形的方法解决实际问题时应注意什么?例例5 如图,一艘海轮位于灯塔如图,一艘海轮位于灯塔P的北偏东的北偏东65方向,距离灯塔方向,距离灯塔80海里海里的的A处,它沿正南方向航行一段时间后,到达位于灯塔处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东的南偏东34方向上的方向上的B处,这时,海轮所在的处,这时,海轮所在的B处距离灯塔处距离灯塔
2、P有多远(精确到有多远(精确到0.01海里)?海里)?解:如图解:如图,在,在RtAPC中,中,PCPAcos(9065)80cos25800.91=72.8在在RtBPC中,中,B34当海轮到达位于灯塔当海轮到达位于灯塔P的南偏东的南偏东34方向时,它距离灯塔方向时,它距离灯塔P大约大约130.23海里海里6534PBCA 解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相解直角三角形有广泛的应用,解决问题时,要根据实际情况灵活运用相关知识,例如,当我们要测量如图所示大坝的高度关知识,例如,当我们要测量如图所示大坝的高度h时,只要测出仰角时,只要测出仰角a和大坝的坡面长度和大坝的
3、坡面长度l,就能算出就能算出h=lsina,但是,当我们要测量如图所示的但是,当我们要测量如图所示的山高山高h时,问题就不那么简单了,这是由于不能很方便地得到仰角时,问题就不那么简单了,这是由于不能很方便地得到仰角a和山和山坡长度坡长度l化整为零,积零为整,化曲为直,以直代曲的解决问题的策略化整为零,积零为整,化曲为直,以直代曲的解决问题的策略与测坝高相比,测山高的困难在于;坝坡是与测坝高相比,测山高的困难在于;坝坡是“直直”的,而山坡是的,而山坡是“曲曲”的,怎样解决这样的问题呢?的,怎样解决这样的问题呢?hhll 我们设法我们设法“化曲为直,以直代曲化曲为直,以直代曲”我们可以把山坡我们可
4、以把山坡“化整化整为零为零”地划分为一些小段,图表示其中一部分小段,划分小段地划分为一些小段,图表示其中一部分小段,划分小段时,注意使每一小段上的山坡近似是时,注意使每一小段上的山坡近似是“直直”的,可以量出这段的,可以量出这段坡长坡长l1,测出相应的仰角测出相应的仰角a1,这样就可以算出这段山坡的高度这样就可以算出这段山坡的高度h1=l1sina1.在每小段上,我们都构造出直角三角形,利用上面的方法分别算在每小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度出各段山坡的高度h1,h2,hn,然后我们再然后我们再“积零为整积零为整”,把,把h1,h2,hn相加,于是得到山高相
5、加,于是得到山高h.hl 以上解决问题中所用的以上解决问题中所用的“化整为零,积零为整化整为零,积零为整”“化曲为直,以直代曲化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容在今后的学习中,你会更多地了解这方面的内容 1.海中有一个小岛海中有一个小岛A,它的周围它的周围8海里内有暗礁,渔船跟踪鱼群由西向到航海里内有暗礁,渔船跟踪鱼群由西向到航行,在行,在B点测得小岛点测得小岛A在北偏东在北偏东60方向上,航行方向上,航行12海里到达海里到达D点,这时测得点,
6、这时测得小岛小岛A在北偏到在北偏到30方向上,如果渔船不改变航线继续向东航行,有没有触方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?礁的危险?BADF解:由点解:由点A作作BD的垂线的垂线交交BD的延长线于点的延长线于点F,垂足为垂足为F,AFD=90由题意图示可知由题意图示可知DAF=30设设DF=x,AD=2x则在则在RtADF中,根据勾股定理中,根据勾股定理在在RtABF中,中,解得解得x=610.4 8没有触礁危险没有触礁危险练习练习30602.如图,拦水坝的横断面为梯形如图,拦水坝的横断面为梯形ABCD(图中图中i=1:3是指坡面的铅直高是指坡面的铅直高度度DE与水平宽度
7、与水平宽度CE的比),根据图中数据求:的比),根据图中数据求:(1)坡角)坡角a和和;(2)坝顶宽坝顶宽AD和斜坡和斜坡AB的的长长(精确到(精确到0.1m)BADFEC6mi=1:3i=1:1.5解解:(:(1)在)在RtAFB中,中,AFB=90 在在RtCDE中,中,CED=90利用解直角三角形的知识解决实际问题的一般过程是:利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;形;(3)得到数学问题的答案;)得到数学问题的答案;(4)得到实际问题的答案)得到实际问题的答案