(精品)1.1.2简单组合体的结构特征 (9).ppt

上传人:s****8 文档编号:69943566 上传时间:2023-01-12 格式:PPT 页数:53 大小:4.33MB
返回 下载 相关 举报
(精品)1.1.2简单组合体的结构特征 (9).ppt_第1页
第1页 / 共53页
(精品)1.1.2简单组合体的结构特征 (9).ppt_第2页
第2页 / 共53页
点击查看更多>>
资源描述

《(精品)1.1.2简单组合体的结构特征 (9).ppt》由会员分享,可在线阅读,更多相关《(精品)1.1.2简单组合体的结构特征 (9).ppt(53页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、空间几何体的结构空间几何体的结构1.11.1汕头市潮阳南侨中学汕头市潮阳南侨中学张启帆张启帆主要内容1.1.1棱、锥、台、球的结构特征1.1.2简单组合体的结构特征空间几何体导入空间几何体导入空间几何体导入奥运场馆奥运场馆鸟巢鸟巢奥运场馆奥运场馆水立方水立方世博场馆世博场馆中国馆中国馆世博轴世博轴演艺中心演艺中心在现实生活中在现实生活中,我们的周围存在着各种各样的我们的周围存在着各种各样的物体物体,它们具有不同的几何形状。它们具有不同的几何形状。空间几何体空间几何体如果我们只考虑物体的如果我们只考虑物体的形状形状和和大小大小,而不考,而不考虑其它因素,那么由这些物体抽象出来的空虑其它因素,那么

2、由这些物体抽象出来的空间图形就叫做间图形就叫做空间几何体空间几何体。请观察下图中的物体请观察下图中的物体 观察下面的图片,这些图片中的物体具有什观察下面的图片,这些图片中的物体具有什么几何结构特征?你能对它们进行分类吗?分类么几何结构特征?你能对它们进行分类吗?分类依据是什么?依据是什么?观察实例,思考共性观察实例,思考共性观察实例,思考共性观察实例,思考共性观察实例,思考共性观察实例,思考共性观察实例,思考共性观察实例,思考共性归类分析归类分析归类分析归类分析多面体多面体 我们把由若干个平面多边形围成的几何体叫做多面体多面体.围成多面体的各个多边形叫做多面体的面面 相邻两个面的公共边叫做多面

3、体的棱棱 棱与棱的公共点叫做多面体的顶点顶点多面体多面体面面ADD1 A1,面 ABCD等棱A1A,棱AB等顶点 A,顶点B等棱顶点归类分析归类分析归类分析归类分析旋转体旋转体 一个矩形绕着它的一条边所在的一条直一个矩形绕着它的一条边所在的一条直线旋转所成的封闭几何体叫做线旋转所成的封闭几何体叫做圆柱,圆柱,这条定这条定直线叫做直线叫做圆柱的轴圆柱的轴.我们把一个平面图形绕着它所在平面内我们把一个平面图形绕着它所在平面内的一条直线旋转所行成的封闭几何体叫做的一条直线旋转所行成的封闭几何体叫做旋旋转体,转体,这条定直线叫做这条定直线叫做旋转体的轴旋转体的轴.探究问题 分别以直角三角形的不同的边所

4、在的直线为轴旋转三角形得到的旋转体形状相同吗?如果不同请你画出来。的结构特征的结构特征柱、柱、锥、锥、台、台、球球1.1.1请仔细观察下列几何体请仔细观察下列几何体,说说它们的共同特点说说它们的共同特点.定义定义:有两个面互相平行有两个面互相平行,其余各面都是其余各面都是四边形四边形,并且每相邻两个四边形的公共边并且每相邻两个四边形的公共边都互相平行都互相平行,由这些面围成的几何体由这些面围成的几何体叫做叫做棱柱棱柱。棱柱的有关概念棱柱的有关概念DABCEFFAEDBC侧侧面面顶点顶点底面底面侧棱侧棱棱柱中棱柱中,两个互相平行的面两个互相平行的面叫棱柱的叫棱柱的底面底面(简称底简称底),其余各

5、面叫棱柱的其余各面叫棱柱的侧面侧面,相邻侧面的公共边叫相邻侧面的公共边叫侧棱侧棱,侧面与底面的公共顶点叫侧面与底面的公共顶点叫棱柱的棱柱的顶点顶点。(1 1)底面互相平行)底面互相平行(2 2)侧面都是)侧面都是平行四边形平行四边形(3 3)侧棱平行且相等)侧棱平行且相等 棱柱的分类:棱柱的分类:棱柱的底面可以是三角形、棱柱的底面可以是三角形、四边形、五边形、四边形、五边形、我们把这样的棱柱我们把这样的棱柱分别叫做分别叫做三棱柱、四棱柱、五棱柱、三棱柱、四棱柱、五棱柱、三棱柱三棱柱四棱柱四棱柱五棱柱五棱柱1.侧棱不垂直于底的棱柱叫做侧棱不垂直于底的棱柱叫做斜棱柱斜棱柱2.侧棱垂直于底的棱柱叫做

6、侧棱垂直于底的棱柱叫做直棱柱直棱柱3.底面是正多边形的直棱柱叫做底面是正多边形的直棱柱叫做正棱柱正棱柱棱柱的表示棱柱的表示用底面各顶点的字母表示棱柱用底面各顶点的字母表示棱柱,如图所示的六棱柱表示为:如图所示的六棱柱表示为:“棱柱棱柱ABCDEFABCDEF”DABCEFFAEDBC理解棱柱理解棱柱探究探究1:一个长方体,能作为一个长方体,能作为棱柱底面的有几对?棱柱底面的有几对?答:长方体有三对答:长方体有三对平行平面;这三对都可平行平面;这三对都可以作为棱柱的底面以作为棱柱的底面有两个面互相平行,其余各面都是平行四有两个面互相平行,其余各面都是平行四边形的几何体是棱柱吗?边形的几何体是棱柱

7、吗?答:不一定是答:不一定是如图所示的几何体,如图所示的几何体,不是棱柱不是棱柱探究探究2:长方体按如图截去一角后所得的两部分还是棱柱吗?长方体按如图截去一角后所得的两部分还是棱柱吗?探究探究3:ABCDABCD长方体按如图截去一角后所得的两部分还是棱柱吗长方体按如图截去一角后所得的两部分还是棱柱吗?探究探究3:ABCDABCDEFGHFEHG 答:都是棱柱答:都是棱柱探究探究4:观察右边的棱柱,观察右边的棱柱,共有多少共有多少对平行平面?能作为棱柱的对平行平面?能作为棱柱的底面的有几对?底面的有几对?答:四对平行平面;只有一答:四对平行平面;只有一对可以作为棱柱的底面对可以作为棱柱的底面 棱

8、柱的任何两个平行平面都可以作为棱柱棱柱的任何两个平行平面都可以作为棱柱的底面吗?的底面吗?答:不是答:不是请仔细观察下列几何体请仔细观察下列几何体,说说它们的共同特点说说它们的共同特点.定义定义:有一个面是多边形有一个面是多边形,其余各面都是其余各面都是有一个公共顶点的三角形有一个公共顶点的三角形,由这些面由这些面所围成的几何体叫做所围成的几何体叫做棱锥棱锥。SABCD顶点顶点侧面侧面侧棱侧棱底面底面 棱锥中棱锥中,这个多边形面这个多边形面叫做棱锥的叫做棱锥的底面或底底面或底,有有公共顶点的各个三角形公共顶点的各个三角形面叫做棱锥的面叫做棱锥的侧面侧面,各侧各侧面的公共顶点叫做棱锥面的公共顶点

9、叫做棱锥的的顶点顶点,相邻侧面的公共相邻侧面的公共边叫做棱锥的边叫做棱锥的侧棱侧棱。棱锥的有关概念棱锥的有关概念棱锥的表示棱锥的表示用表示顶点和底面各顶点的字母表示用表示顶点和底面各顶点的字母表示,如图所如图所示的棱锥表示为:示的棱锥表示为:“棱锥棱锥SABCD”棱锥的分类:棱锥的分类:按底面多边形的边数,可以分为三按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、棱锥、四棱锥、五棱锥、ABCDS棱锥的性质:棱锥的性质:侧面、对角面都是三角形侧面、对角面都是三角形;平行于底面的截面与底平行于底面的截面与底面相似面相似,其相似比等于顶点到截面距离与高的比的其相似比等于顶点到截面距离与高的比的平

10、方。平方。用一个平行于棱锥底面的平面去截棱锥用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体得到怎样的两个几何体?想一想想一想:ABCDABCD 用一个平行于棱用一个平行于棱锥底面的平面去截棱锥底面的平面去截棱锥锥,底面与截面之间底面与截面之间的部分是棱台的部分是棱台.棱台的有关概念:棱台的有关概念:棱台的分类:棱台的分类:由三棱锥、四棱锥、五棱锥由三棱锥、四棱锥、五棱锥截截得的棱台,分别叫做得的棱台,分别叫做三棱台,四棱台,三棱台,四棱台,五棱台五棱台棱台的表示方法:棱台的表示方法:“棱台棱台ABCDABCDABCDABCD”棱台的特点:棱台的特点:两个底面是相似多边形两个底面是相似

11、多边形,侧面都是梯形侧面都是梯形;侧棱延长后交于一点侧棱延长后交于一点。练习:下列几何体是不是棱台练习:下列几何体是不是棱台,为什么为什么?(1)(2)想一想想一想,怎样给多面体分类呢怎样给多面体分类呢?答:可以按面数分类答:可以按面数分类,多面体有几个面就多面体有几个面就称为几面体。如称为几面体。如:三棱锥是四面体三棱锥是四面体,四棱柱四棱柱是六面体是六面体.练习练习:见见P8页页A组第组第1题的题的(1),(2),(3)小题小题.思考:思考:棱柱、棱锥和棱台都是多面体,当棱柱、棱锥和棱台都是多面体,当底面发生变化时,它们能否互相转化?底面发生变化时,它们能否互相转化?上底扩大上底扩大上底缩

12、小上底缩小AA母母线线定义:定义:以矩形的一边所在直线为以矩形的一边所在直线为旋转轴旋转轴,其余边旋转形成的曲面所其余边旋转形成的曲面所围成的几何体叫做圆柱。围成的几何体叫做圆柱。(1 1)圆柱的轴)圆柱的轴旋转轴旋转轴.(2 2)圆柱的底面)圆柱的底面垂直于轴垂直于轴的边旋转而成的圆面。的边旋转而成的圆面。(3 3)圆柱的侧面)圆柱的侧面平行于轴平行于轴的边旋转而成的曲面。的边旋转而成的曲面。(4 4)圆柱侧面的母线)圆柱侧面的母线无论无论旋转到什么位置,不垂直于轴的旋转到什么位置,不垂直于轴的边。边。BOBO轴轴底面底面侧侧面面圆柱的表示方法:圆柱的表示方法:用表示它的轴的字母表用表示它的

13、轴的字母表示示,如如:“圆柱圆柱OOOO”S顶点顶点ABO底面底面轴轴侧侧面面母母线线定义:以直角三角形的定义:以直角三角形的一条直角边所在直线为一条直角边所在直线为旋转轴旋转轴,其余两边旋转形其余两边旋转形成的曲面所围成的几何成的曲面所围成的几何体叫做圆锥。体叫做圆锥。圆锥的表示方法:圆锥的表示方法:用表示用表示它的轴的字母表示它的轴的字母表示,如如:“圆锥圆锥SOSO”OO定义:用一个平行于定义:用一个平行于圆锥底面的平面去截圆锥底面的平面去截圆锥圆锥,底面与截面之间底面与截面之间的部分是圆台的部分是圆台.想一想想一想:圆台能否用圆台能否用旋转的方法得到旋转的方法得到?若若能能,请指出用什

14、么图请指出用什么图形形?怎样旋转怎样旋转?思考:思考:圆柱、圆锥和圆台都是旋转体,当圆柱、圆锥和圆台都是旋转体,当底面发生变化时,它们能否互相转化?底面发生变化时,它们能否互相转化?上底扩大上底扩大上底缩小上底缩小O半径半径球心球心定义:以半圆的直径定义:以半圆的直径所在直线为旋转轴所在直线为旋转轴,半半圆面旋转一周形成的圆面旋转一周形成的几何体几何体.球的表示方法:球的表示方法:用表示球心用表示球心的字母表示的字母表示,如如:“球球O O”练习练习:见见P8页页A组第组第1题题的的(4)小题小题,第第2题题.几何体的分类几何体的分类柱体柱体锥体锥体台体台体球球多面体多面体旋转体旋转体简单组合

15、体简单组合体 现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是是由简单几何体组合而成的,这些几何体叫做简单组合体.观察实物图形判断这些几何体是怎样由简单几观察实物图形判断这些几何体是怎样由简单几何体组成的?何体组成的?探究简单组合体的构成简单组合体的构成一、由简单几何体拼接而成二、由简单几何体截取或挖去一部分而成 观察两个实物几何体,你能说出它们各由哪观察两个实物几何体,你能说出它们各由哪些简单几何体组合而成吗?些简单几何体组合而成吗?(1)(2)练一练练一练:将一个直角梯形绕其较短的底所在将一个直角梯形绕其较短的底所在的直线旋转一周得到一个几何体,关于

16、该几何的直线旋转一周得到一个几何体,关于该几何体的以下描绘中,正确的是体的以下描绘中,正确的是()A、是一个圆台、是一个圆台 B、是一个圆柱、是一个圆柱 C、是一个圆柱和一个圆锥的简单组合体、是一个圆柱和一个圆锥的简单组合体 D、是一个圆柱被挖去一个圆锥后所剩的几何体、是一个圆柱被挖去一个圆锥后所剩的几何体D练习练习:见见P8页页A组第组第3题题,第第4题题,第第5题题.1.已知圆锥的轴截面等腰三角形的腰长为已知圆锥的轴截面等腰三角形的腰长为 5cm,面积为面积为12cm,求圆锥的底面半径求圆锥的底面半径.2.已知圆柱的底面半径为已知圆柱的底面半径为3cm,轴截面面轴截面面积为积为24cm,求圆柱的母线长求圆柱的母线长.3.已知长方体的长、宽、高之比为已知长方体的长、宽、高之比为4 3 12,对角线长为,对角线长为26cm,则长、宽、高分别为则长、宽、高分别为多少?多少?知识小结知识小结简单几何体的结构特征简单几何体的结构特征柱体柱体锥体锥体台体台体球球棱柱棱柱圆柱圆柱棱锥棱锥圆锥圆锥棱台棱台 圆台圆台

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁