《中考数学 专题10 存在性-等边三角形(原卷版).doc》由会员分享,可在线阅读,更多相关《中考数学 专题10 存在性-等边三角形(原卷版).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考数学压轴题-二次函数-存在性问题第10节 等边三角形的存在性 方法点拨一、两定一动A、确定点的位置B、求解过程二、两动一定三、方法总结 例题演练题组1:两定一动1如图,已知抛物线C1与x轴交于A(4,0),B(1,0)两点,与y轴交于点C(0,2)将抛物线C1向右平移m(m0)个单位得到抛物线C2,C2与x轴交于D,E两点(点D在点E的左侧),与抛物线C1在第一象限交于点M(1)求抛物线C1的解析式,并求出其对称轴;(2)当m1时,直接写出抛物线C2的解析式;直接写出用含m的代数式表示点M的坐标(3)连接DM,AM在抛物线C1平移的过程中,是否存在ADM是等边三角形的情况?若存在,请求出此
2、时m的值;若不存在,请说明理由2如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点(1)求二次函数的表达式;(2)P为平面内一点,当PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y1相切若存在,求出点E的坐标,并求E的半径;若不存在,说明理由 3如图,抛物线C1:yx2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m0)个单位得到抛物线C2,C2交x轴于A,B两点(点A在点B的左边),交y轴于点C(1)求抛物线C1的
3、解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;(3)若抛物线C2的对称轴存在点P,使PAC为等边三角形,求m的值 4如图,抛物线yax2+x+c经过点A(1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MPy轴,交抛物线于点P(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作M,当M与坐标轴相切时,求出M的半径 题组2:两动一定5如图,抛物线yx22x+c经过点A(2,5),与x轴相
4、交于B,C两点,点B在点C的左边(1)求抛物线的函数表达式与B,C两点坐标;(2)点D在抛物线的对称轴上,且位于x轴的上方,将BCD沿直线BD翻折得到BCD,若点C恰好落在抛物线的对称轴上,求点C和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当CPQ为等边三角形时,求直线BP的函数表达式 6如图,抛物线的解析式为yx+5,抛物线与x轴交于A、B两点(A点在B点的左侧),与y轴交于点C,抛物线对称轴与直线BC交于点D(1)E点是线段BC上方抛物线上一点,过点E作直线EF平行于y轴,交BC于点F,若线段CD长度保持不变,沿直线BC移动得到CD,当线段EF最大时,求
5、EC+CD+DB的最小值;(2)Q是抛物线上一动点,请问抛物线对称轴上是否存在一点P是APQ为等边三角形,若存在,请直接写出三角形边长,若不存在请说明理由7综合与探究如图,抛物线yx2x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,直线l经过B、C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD、BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)请直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时t的值;求点M运动的过程中线段CD长度的最小值题组3:三动点8如图1,抛物线C1:yax22ax+c(a0)与x轴交于A、B两点,与y轴交于点C已知点A的坐标为(1,0),点O为坐标原点,OC3OA,抛物线C1的顶点为G(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k0)个单位,得到抛物线C2,设C2与x轴的交点为A、B,顶点为G,当ABG是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y1上是否存在点N,使得以P、Q、N为顶点的三角形与AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由