2022年最新精品解析北师大版九年级数学下册第二章二次函数必考点解析试题(含答案解析).docx

上传人:知****量 文档编号:28185803 上传时间:2022-07-26 格式:DOCX 页数:26 大小:632.92KB
返回 下载 相关 举报
2022年最新精品解析北师大版九年级数学下册第二章二次函数必考点解析试题(含答案解析).docx_第1页
第1页 / 共26页
2022年最新精品解析北师大版九年级数学下册第二章二次函数必考点解析试题(含答案解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年最新精品解析北师大版九年级数学下册第二章二次函数必考点解析试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年最新精品解析北师大版九年级数学下册第二章二次函数必考点解析试题(含答案解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若A(-6,y1),B(-3,y2),C(1,y3)为二次函数图象上的三点,则y1,y2,y3的大小关系是(

2、)Ay2y3y1By1y2y3Cy3y1y2Dy2y1y32、在求解方程时,先在平面直角坐标系中画出函数的图象,观察图象与轴的两个交点,这两个交点的横坐标可以看作是方程的近似解,分析右图中的信息,方程的近似解是( )A,B,C,D,3、抛物线y = a + bx + c的对称轴是( )Ax=Bx = - Cx =Dx = - 4、已知二次函数yx22x1图象上的三点A(1,y1),B(2,y2),C(4,y3),则y1、y2、y3的大小关系为( )Ay1y2y3By2y1y3Cy1y3y2Dy3y1y25、如图1所示,DEF中,DEF90,D30,B是斜边DF上一动点,过B作ABDF于B,交边

3、DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D486、将抛物线向下平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )ABCD7、已知二次函数(m为常数),当时,函数值y的最小值为-2,则m的值为( )AB或C或D或8、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A它们的开口方向相同B它们的对称轴相同C它们的变化情況相同D它们的顶点坐标相同9、已知抛物线经过,若时,则,的大小关系是(

4、)ABCD10、在平面直角坐标系中,已知点的坐标分别为,若抛物线与线段只有一个公共点,则的取值范围是( )A或B或C或D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知抛物线yx22x的图象上三个点的坐标分别为A(1,y1),B(2,y2),C(4,y3),则y1,y2,y3按从小到大排列为 _2、将抛物线向上平移2个单位,再向右平移1个单位后得到的抛物线为,则_,_3、将抛物线向上平移一个单位长度,得到的抛物线的表达式为_4、将抛物线y2x2向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为 _5、如图,在平面直角坐标系中,、两点的坐标分别为、,点是线段

5、的中点,将线段绕点顺时针旋转得到,过、三点作抛物线当时,抛物线上最高点的纵坐标为_三、解答题(5小题,每小题10分,共计50分)1、为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示若设矩形小花园AB边的长为m,面积为ym2(1)求与之间的函数关系式;(2)当为何值时,小花园的面积最大?最大面积是多少?2、已知抛物线(1)求证:该抛物线与x轴有两个交点;(2)求出它的交点坐标(用含m的代数式表示);(3)当两交点之间的距离是4时,求出抛物线的表达式3、二次函数yax2bxc的图象经过点A(4,0)

6、,B(0,3),C(2,0),求它的解析式,直接写出它的开口方向、对称轴和顶点坐标4、抛物线yax2+bx+c的顶点坐标为(m,n)(1)若抛物线yax2+bx+c过原点,m2,n4,求其解析式(2)如图(1),在(1)的条件下,直线l:yx+4与抛物线交于A、B两点(A在B的左侧),MN为线段AB上的两个点,MN2,在直线l下方的抛物线上是否存在点P,使得PMN为等腰直角三角形?若存在,求出M点横坐标;若不存在,请说明理由(3)如图(2),抛物线yax2+bx+c与x轴负半轴交于点C,与y轴交于点G,P点在点C左侧抛物线上,Q点在y轴右侧抛物线上,直线CQ交y轴于点F,直线PC交y轴于点H,

7、设直线PQ解析式为ykx+t,当SHCQ2SGCQ,试证明是否为一个定值5、在平面直角坐标系xOy中,二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:x1012y3010(1)求这个二次函数的表达式;(2)画出这个二次函数的图象;(3)若,结合函数图象,直接写出x的取值范围-参考答案-一、单选题1、A【分析】根据二次函数的对称性和增减性即可得【详解】解:二次函数的对称轴为直线,时的函数值与时的函数值相等,即为,又在内,随的增大而减小,且,故选:A【点睛】本题考查了二次函数的图象与性质,熟练掌握二次函数的对称性和增减性是解题关键2、D【分析】由题意观察的图象,进而根据与轴的两个交点的横坐

8、标进行分析即可.【详解】解:因为两个交点的横坐标可以看作是方程的近似解,两个交点的横坐标为:,所以方程的近似解是,.故选:D.【点睛】本题考查二次函数图象与轴的交点问题,熟练掌握并结论方程思想可知与轴的两个交点的横坐标可以看作是方程的近似解进行分析.3、D【分析】根据抛物线对称轴的计算公式判断【详解】抛物线y = a + bx + c的对称轴是x = - ,故选D【点睛】本题考查了抛物线的对称轴,熟练抛物线对称轴的计算公式是解题的关键4、D【分析】由二次函数图象开口向下可得离对称轴越近的点y值越大,进而求解【详解】解:y=-x2+2x+1=-(x-1)2+2,抛物线开口向下,且对称轴为直线x=

9、1,4-11-(-1)2-1,y2y1y3,故选:D【点睛】本题考查二次函数的性质,解题关键是掌握二次函数图象的性质,根据二次函数图象作答,不需要求函数值5、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键6、D【分析】根据抛物线平移的性质计算即可【详解】抛物线的顶点坐标为(0,0)又向下平移3个单位长度,再向右平移5个单位长度此时顶点坐标为(5,-3)移动后抛物线方程为故选:D【点睛】本题考查了抛

10、物线的移动,抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关抛物线的移动主要看顶点的移动,的顶点是(0,0),抛物线的平移口诀:自变量加减左右移,函数值加减上下移7、B【分析】将二次函数配方成顶点式,分m-2、m1和-2m1三种情况,根据y的最小值为-2,结合二次函数的性质求解可得【详解】解:y=x2-2mx=(x-m)2-m2, 若m-2,当x=-2时取得最小值,此时y=4+4m=-2, 解得:m=; m=-2(舍去); 若m1,当x=1时取得最小值,y=1-2m=-2, 解得:m=; 若-2m1,当x=m时取得最小值,y=-m2=-2, 解得:或(舍), m的

11、值为 或, 故选:B【点睛】本题主要考查二次函数的最值,根据二次函数的增减性分类讨论是解本题的关键8、B【分析】根据旋转的性质及抛物线的性质即可确定答案【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,2),所以在四个选项中,只有B选项符合题意故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键9、C【分析】由,纵坐标相同可以看出AB关于对称轴对称,即对称轴为,再结合C、D坐标可得C、D关于对称轴对称,再根据,比较m和p的大小即可【详解】,对称轴为,关于对称轴对

12、称,即在对称轴右边当也在对称轴右边时此时由y随x的增大而减小,当在对称轴右边时此时由y随x的增大而减小,故选:C【点睛】本题考查二次函数的性质,解题的关键是根据AB纵坐标相同可以看出A、B关于对称轴对称10、A【分析】将函数解析式化为顶点式形式,得到图形的顶点坐标,图象与相似,确定当m变化时,抛物线顶点在直线y=-x+2上移动,根据m的变化依次分析抛物线与MN的交点个数,由此得到答案【详解】解:,图象的顶点坐标为:(m,-m+2),此函数图象二次项系数为1,与相似,当m变化时,抛物线顶点在直线y=-x+2上移动,m从负增大时,无交点,当m=-1时,点M在抛物线右边,抛物线与MN有1个交点,当m

13、=0,顶点为(0,2)时,抛物线与MN相交,有2个交点,m继续增大,抛物线与MN有2个交点,直到N经过抛物线右边,当m继续增大,保持1个交点,当N经过抛物线左边时,有1个交点,此后无交点,将N(3,3)代入解析式:,解得,的取值范围是或,故选:A【点睛】此题考查了抛物线的解析式化为顶点式,二次函数的性质,抛物线移动的规律,根据抛物线的移动确定与MN的交点个数是解题的关键二、填空题1、y2y1y3【分析】求出抛物线的对称轴,求出A关于对称轴的对称点的坐标,根据抛物线的增减性,即可求出答案【详解】解:yx22x(x1)21,二次函数的开口向上,对称轴是直线x1,在对称轴的右侧y随x的增大而增大,A

14、点关于直线x1的对称点是D(3,y1),234,y2y1y3,故答案为:y2y1y3【点睛】此题考查了二次函数的性质,二次函数的增减性、轴对称性质,根据增减性判断函数值的大小2、1 【分析】先求得每个抛物线的顶点坐标,根据抛物线如何平移,顶点就如何平移可得-b+1=0,即可求得b、c的值【详解】解:抛物线顶点坐标为(-b,)抛物线,的顶点坐标为(0,0)将抛物线向上平移2个单位,再向右平移1个单位后得到的抛物线为,-b+1=0,b=1,c=故答案为:1,【点睛】本题主要考查了二次函数图象与几何变换关键是利用抛物线如何平移,顶点就如何平移3、【分析】根据“左加右减,上加下减”的平移规律即可得答案

15、【详解】抛物线向上平移1个单位长度,抛物线平移后的表达式为,故答案为:【点睛】本题考查二次函数图象的平移,熟练掌握“左加右减,上加下减”的平移规律是解题关键4、y2(x2)2+1【分析】根据“左加右减,上加下减”的平移规律求解即可【详解】解:把抛物线y2x2向右平移2个单位得到抛物线y2(x2)2的图象,再向上平移1个单位得到抛物线y2(x2)2+1的图象故答案为:y2(x2)2+1【点睛】主要考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式是解题的关键5、【分析】根据题意求得顶点坐标,然后利用待定系数法即可求得抛物线的解析式,根据图象上点的坐标特征即

16、可求得抛物线上最高点的纵坐标【详解】解:、两点的坐标分别为、,点是线段的中点,轴,将线段绕点顺时针旋转得到,轴,顶点为,设抛物线的解析式为,代入得,抛物线开口向下,当时,在时,函数有最大值为:,当时,抛物线上最高点的纵坐标为故答案为:【点睛】本题考查的是二次函数的最值,待定系数法求二次函数的解析式,二次函数的性质,坐标与图形变化-旋转,根据题意得到顶点坐标是解题的关键三、解答题1、(1)(1).();(2)当x为时,小花园的面积最大,最大面积是【分析】(1)首先根据矩形的性质,由花园的AB边长为x m,可得BC=(40-2x)m,然后根据矩形面积即可求得y与x之间的函数关系式,又由墙长25m,

17、即可求得自变量的x的范围;(2)用配方法求最大值解答问题【详解】解:(1)四边形ABCD是矩形,AB=CD,AD=BC,AB=x m,BC=(40-2x)m,花园的面积为:y=ABBC=x(40-2x)=-2x2+40x,40-2x25,x+x40,x7.5,x20,7.5x20,y与x之间的函数关系式为:y=-2x2+40x(7.5x3【分析】(1)设二次函数的表达式为,根据三组横坐标x和纵坐标y的值列出方程组求出a,b,c的值即可得到二次函数的表达式;(2)计算并补充出一些横坐标x和纵坐标y的对应值,然后在平面直角坐标系中描点,并用平滑曲线连接即可;(3)根据二次函数的图象应用数形结合思想即可得到x的取值范围【详解】解:(1)设二次函数的表达式为将三组横坐标x,纵坐标y的值代入可得解得所以二次函数的表达式为(2)横坐标x与纵坐标y的对应值如下表:x2101234y8301038建立平面直角坐标系,描点并用平滑曲线连接即可得到该二次函数的图象(3),即根据(2)中二次函数图象可以看出当或x3时,所以x的取值范围是或x3【点睛】本题考查二次函数的解析式,二次函数的图象和性质,熟练掌握这些知识点是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁