《难点解析北师大版九年级数学下册第二章二次函数必考点解析练习题.docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第二章二次函数必考点解析练习题.docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图为二次函数的图象,则函数值y0时,x的取值范围是( )A2C2D-122、将抛物线向下平移3个单位长度,再
2、向右平移5个单位长度,所得到的抛物线为( )ABCD3、下列函数中,是二次函数的是( )ABCD4、抛物线的顶点坐标是( )A(1,2)B(1,)C(,2)D(,)5、在平面直角坐标系中,已知点的坐标分别为,若抛物线与线段只有一个公共点,则的取值范围是( )A或B或C或D6、把函数的图象向右平移2个单位,再向下平移1个单位,得到的图象解析式为( )ABCD7、如图,抛物线的对称轴是直线下列结论:;其中正确结论的个数是( )A1个B2个C3个D4个8、已知二次函数的图象如图所示,则下列结论正确的是( )ABCD9、二次函数的顶点坐标是( )ABCD10、某服装店购进单价为15元的童装若干件,销售
3、一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为( )A21元B22元C23元D24元第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s60t1.5t2,飞机着陆后滑行 _米才能停下来2、将抛物线y2x2向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为 _3、抛物线的顶点坐标是_4、下列关于二次函数yx22mx2m3(m为常数)的结论:该函数的图象与x轴总有两个公共点;若x1时,y随x
4、的增大而增大,则m1;无论m为何值,该函数的图象必经过一个定点;该函数图象的顶点一定不在直线y2的上方其中正确的是_(填写序号)5、抛物线经过,其中现有以下结论:若,则若,则有若,对于任意实数都有若,则的取值范围是其中正确的是_(写出所有正确结论的序号)三、解答题(5小题,每小题10分,共计50分)1、抛物线yax2bx2(a0)与x轴交于点A(1,0),B(3,0),与y轴交于点C(1)求抛物线的解析式;(2)如图1,抛物线的对称轴与x轴相交于点H,连接AC,BCABC绕点B顺时针旋转一定角度后落在第一象限,当点C的对应点C1落在抛物线的对称轴上时,求此时点A的对应点A1的坐标;(3)如图2
5、,过点C作轴交抛物线于点E,已知点D在抛物线上且横坐标为,在y轴左侧的抛物线上有一点P,满足PDCEDC,求点P的坐标2、已知抛物线经过点M(1,1),N(2,5)(1)求,的值;(2)若P(4,),Q(,)是抛物线上不同的两点,且,求的值3、如图,二次函数的图像经过点(1,0),顶点坐标为(1,4)(1)求这个二次函数的表达式;(2)当5x0时,y的取值范围为 ;(3)直接写出该二次函数的图像经过怎样的平移恰好过点(3,4),且与x轴只有一个公共点4、在平面直角坐标系中,抛物线y3ax210axc分别交x轴于点A、B(A左B右)、交y轴于点C,且OBOC6(1)如图1,求抛物线的解析式;(2
6、)如图2,点P在第一象限对称轴右侧抛物线上,其横坐标为t,连接BC,过点P作BC的垂线交x轴于点D,连接CD,设BCD的面积为S,求S与t的函数关系式(不要求写出t的取值范围);(3)如图3,在(2)的条件下,线段CD的垂直平分线交第二象限抛物线于点E,连接EO、EC、ED,且EOC45,点N在第一象限内,连接DN,点G在DE上,连接NG,点M在DN上,NMEG,在NG上截取NHNM,连接MH并延长交CD于点F,过点H作HKFM交ED于点K,连接FK,若FKGHKD,GK2MN,求点G的坐标5、如图,二次函数的图象顶点坐标为(1,2),且过(1,0)(1)求该二次函数解析式;(2)当时,则函数
7、值y得取值范围是 -参考答案-一、单选题1、D【分析】根据图象可得:处在x轴下方的部分即,即可得出自变量的取值范围【详解】解:根据图象可得:处在x轴下方的部分即,此时自变量的取值范围为:,故选:D【点睛】题目主要考查二次函数图象的基本性质及利用图象求不等式的解集,结合图象得出不等式的解集是解题关键2、D【分析】根据抛物线平移的性质计算即可【详解】抛物线的顶点坐标为(0,0)又向下平移3个单位长度,再向右平移5个单位长度此时顶点坐标为(5,-3)移动后抛物线方程为故选:D【点睛】本题考查了抛物线的移动,抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关抛物线的移动主要
8、看顶点的移动,的顶点是(0,0),抛物线的平移口诀:自变量加减左右移,函数值加减上下移3、B【分析】根据二次函数的定义即可判断【详解】A. 是反比例函数,故此选项错误;B. 是二次函数,故此选项正确;C. 是一次函数,故此选项错误;D. 是正比例函数,故此选项错误故选:B【点睛】本题考查二次函数的定义:形如,其中,且a、b、c是常数,掌握二次函数的定义是解题的关键4、C【分析】根据顶点式直接写出顶点坐标即可【详解】解:抛物线的顶点坐标是(,2),故选:C【点睛】本题考查了抛物线的顶点坐标,解题关键是明确二次函数顶点式的顶点坐标为5、A【分析】将函数解析式化为顶点式形式,得到图形的顶点坐标,图象
9、与相似,确定当m变化时,抛物线顶点在直线y=-x+2上移动,根据m的变化依次分析抛物线与MN的交点个数,由此得到答案【详解】解:,图象的顶点坐标为:(m,-m+2),此函数图象二次项系数为1,与相似,当m变化时,抛物线顶点在直线y=-x+2上移动,m从负增大时,无交点,当m=-1时,点M在抛物线右边,抛物线与MN有1个交点,当m=0,顶点为(0,2)时,抛物线与MN相交,有2个交点,m继续增大,抛物线与MN有2个交点,直到N经过抛物线右边,当m继续增大,保持1个交点,当N经过抛物线左边时,有1个交点,此后无交点,将N(3,3)代入解析式:,解得,的取值范围是或,故选:A【点睛】此题考查了抛物线
10、的解析式化为顶点式,二次函数的性质,抛物线移动的规律,根据抛物线的移动确定与MN的交点个数是解题的关键6、A【分析】根据函数图象平移变换关系进行求解即可【详解】把函数的图象向右平移2个单位、再向下平移1个单位后的解析式为故选:A【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式7、C【分析】根据函数图象确定a、b、c的正负,即可确定的正误;根据对称轴确定b和2a的关系,进而确定的正误;根据函数图象确定x=-2的函数值的正负,然后代入抛物线的解析式即可确定的正误;当x=-1时,可确定a-b+c0,当x=1时,函数值小于0,即a+b+c0,可判
11、断的正误;当x=-1时,y有最大值,然后与x=m时的函数值,列不等式化简即可【详解】解:有抛物线开口方向向下,与y轴相交正半轴a0,c0抛物线的对称轴为x=-1 ,即b=2a0,故正确;b=2ab-2a=0,故错误;如图:抛物线的对称轴为x=-1,当x=0时,函数值大于0当x=-2时,函数值大于0,4a-2b+c0,即4a+c2b,故错误;由图象可知,抛物线的对称轴为x=-1,此时函数有最大值且函数值大于0当x=-1时,函数值大于0,即a-b+c0当x=1时,函数值小于0,当x=1时,函数值小于0,即a+b+c0(a+c)2-b2=(a-b+c)(a+b+c)0,即正确;当x=-1时,函数有最
12、大值y=a-b+c当x=m时,函数值为y=am2+bm+ca-b+cam2+bm+c,即,故正确故选C【点睛】本题主要考查了二次函数的图象的性质,灵活运用数形结合思想成为解答本题的关键8、D【分析】由抛物线开口向下,得到a小于0,再由对称轴在y轴左侧,得到a与b同号,可得出b0,又抛物线与y轴交于正半轴,得到c大于0,可判断选项A;由x=-1时,对应的函数值大于0,可判断选项B;由x=-2时对应的函数值小于0,可判断选项C;由对称轴大于-1,利用对称轴公式得到b2a,可判断选项D【详解】解:由抛物线的开口向下,得到a0,-0,b0,由抛物线与y轴交于正半轴,得到c0,abc0,故选项A错误;x
13、=-1时,对应的函数值大于0,a-b+c0,故选项B错误;x=-2时对应的函数值小于0,4a-2b+c0,故选项C错误;对称轴大于-1,且小于0,0-1,即0b2a,故选项D正确,故选:D【点睛】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;此外还要注意x=1,-1,2及-2对应函数值的正负来判断其式子的正确与否9、B【分析】将解析式化为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标【详解】解:二次函数的顶点坐标是故选B【点睛】本题主要考查二次函数的性质
14、,将解析式化为顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为直线x=h,顶点坐标为(h,k)10、B【分析】设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据每天的销售利润等于每件的利润乘以销售量,列出函数关系式,即可求解【详解】解:设每天的销售利润为 元,每件的定价为 元,则每件的利润为元,平均每天售出件, 根据题意得: , 当 时, 最大,即每件的定价为22元时,每天的销售利润最大故选:B【点睛】本题主要考查了二次函数的应用,明确题意,准确列出函数关系式是解题的关键二、填空题1、600【分析】将函数解析式化为顶点式,利用函数的最值解答【详解】解:
15、s60t1.5t2=,当t=20时,s有最大值600,故答案为:600【点睛】此题考查了将一般式函数化为顶点式,函数的最值,正确理解题意是解题的关键2、y2(x2)2+1【分析】根据“左加右减,上加下减”的平移规律求解即可【详解】解:把抛物线y2x2向右平移2个单位得到抛物线y2(x2)2的图象,再向上平移1个单位得到抛物线y2(x2)2+1的图象故答案为:y2(x2)2+1【点睛】主要考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式是解题的关键3、(1,2)【分析】直接根据顶点公式的特点求顶点坐标即可得答案【详解】是抛物线的顶点式,顶点坐标为(1,2
16、)故答案为:(1,2)【点睛】本题主要考查了求抛物线的顶点坐标、对称轴及最值的方法解题的关键是熟知顶点式的特点4、【分析】根据根的判别式化简可判断;根据二次函数的增减性及取值范围可判定;将原函数化简变形可判定;写出顶点纵坐标,然后化简可判断【详解】解:,其中,=b2-4ac=-2m2-41(2m-3),方程一定有两个实数根,即该函数的图象与x轴总有两个公共点,正确;若时,y随x的增大而增大,则,错误;,;当时,无论m为何值,该函数的图象必经过一个定点,正确;顶点纵坐标为:,该函数图象的顶点一定不在直线y2的上方,正确;综上可得:正确结果为;故答案为:【点睛】题目主要考查二次函数的基本性质及与一
17、元二次方程的联系,熟练掌握运用二次函数的基本性质是解题关键5、【分析】由抛物线的对称性与函数值的情况进行推理,进而对各结论进行判断【详解】解:抛物线经过,其中对称轴x=-m=-故为抛物线的顶点,时,为对称点,则,故正确;若,则对称轴为x=2,函数开口方向不确定大小不确定;故错误;若,函数开口向上,故对于任意实数都有,正确;当时,m=1,函数开口方向向下,则的取值范围是m1,故错误;故答案为:【点睛】主要考查二次函数的图象与性质,二次函数图象上点的坐标特征,解题的关键是熟知二次函数的图象与性质三、解答题1、(1);(2)(3,4);(3)(,)【分析】(1)把A(1,0),B(3,0)代入抛物线
18、解析式利用待定系数法求解二次函数的解析式即可;(2)如图,先求解C(0,2),对称轴为直线,可得BHCO2结合旋转得BC1BC ,证明RTBC1HRTCBO(HL),再证明旋转角A1BAC1BC90,从而可得答案;(3)先求解D(,),E(2,2),如图,过点D作DGCE交CE的延长线于点G,证明CGDG,可得ECDGDC45 ,如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P,证明QCDECD,可得QCEC2,可得Q(0,0),再求解直线DQ的解析式为,联立 ,再解方程组可得答案.【详解】解:(1)将A(1,0),B(3,0)代入抛物线解析式得 解得 抛物线的解析式为(2)抛物线
19、的解析式为,A(1,0),B(3,0)C(0,2),对称轴为直线 BHCO2由旋转得BC1BC 则RTBC1HRTCBO(HL) C1BHBCOC1BCC1BHOBCBCOOBC90旋转角A1BAC1BC90,即A1Bx轴 A1BBA4,B(3,0)A1(3,4)(3)抛物线的解析式为,D的横坐标为当x时,y,则D(,)轴,C(0,2),对称轴为直线x1E(2,2) 如图,过点D作DGCE交CE的延长线于点G, CGDG,ECDGDC45 如图,在CD的上方作PDCEDC交y轴于点Q,交抛物线于点P轴 ,QCE90QCDECD45CDCD,QCDECD(ASA)QCEC2,C(0,2),Q(0
20、,0)D(,),设直线 解得: 直线DQ的解析式为则 ,消去得: 解得: 当时, 当时, 所以方程组的解为:或,【点睛】本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.2、(1)(2)【分析】(1)利用待定系数法求解即可;(2)判断出点P(4,),Q(,)是抛物线上的对称点,利用二次函数的对称性,即可求解(1)解:由抛物线经过M(1,1),N(2,5)两点,得 ,解这个方程组,得;(2)解: P(4,),Q(,)是抛物线上不同
21、的两点,且 , 点P(4,),Q(,)是抛物线上的对称点,抛物线的对称轴为,【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质,正确的理解题意是解题的关键3、(1)y(x1) 24;(2)4y12;(3)向上平移4个单位长度,再向右平移2个单位长度;或向上平移4个单位长度,再向右平移6个单位长度【分析】(1)设为顶点式,运用待定系数法求解即可;(2)抛物线开口向上,有最小值,在5x0范围内,有最小值是-4,求出当x=-5时,y=12,结合函数图象可得y的取值范围;(3)根据题意设出平移后的函数解析式,再把(3,4)代入设出的解析式并求出待定系数即可得解【详解】解:(1)根据题意,设二
22、次函数的表达式为ya(x1) 24 将(1,0)代入ya(x1) 24,得, 解得,a1, y(x1) 24(2)当x=-5时,y=(-5+1)2-4=12抛物线的顶点坐标为(-1,-4)当时,y的最小值为-4,当5x0时,y的取值范围为4y12故答案为4y12; (3)抛物线与x轴只有一个公共点该二次函数的图象向上平移了4个单位,设平移后的二次函数解析式为平移后的二次函数图象经过点(3,4)因此,该二次函数图象经过向上平移4个单位长度,再向右平移2个单位长度或向上平移4个单位长度,再向右平移6个单位长度恰好过点(3,4),且与x轴只有一个公共点【点睛】本题主要考查了待定系数法确定二次函数的解
23、析式及二次函数图象的平移,解题的关键是正确的求得解析式4、(1);(2);(3)【分析】(1)待定系数法求二次函数解析式即可;(2)分类讨论,过点作轴于点,当点在轴正半轴时,当点在轴负半轴时,求得根据即可求得;(3)延长至,使得,连接,求得点的坐标,证明是等腰直角三角形,设,设,则,证明,进而证明四边形是正方形,延长至,使,则,进而证明四边形是平行四边形,求得,分别过作轴的垂线,垂足为,根据平行线的分线段成比例和相似三角形的性质求得点的坐标【详解】解:(1),抛物线y3ax210axc分别交x轴于点A、B(A左B右)、交y轴于点C,解得,抛物线的解析式为;(2)如图,过点作轴于点,当点在轴正半
24、轴时, 抛物线的解析式为,点P在第一象限对称轴右侧抛物线上,其横坐标为t,则,,,是等腰直角三角形即是等腰直角三角形当在轴负半轴时,如图,综上所述:(3)如图,延长至,使得,连接,到轴的距离相等,且在第二象限,即点在上,解得在线段的垂直平分线上,设,则解得是等腰直角三角形,又设,则即,三点共线设,则,在与中又即是等腰直角三角形在四边形中,在与中四点共圆在与中四边形是矩形又四边形是正方形如图,延长至,使,则又四边形是平行四边形四边形是正方形如图,分别过作轴的垂线,垂足为解得【点睛】本题考查了二次函数的综合运用,待定系数法求二次函数解析式,二次函数与面积问题,三角形相似的性质与判定,第三问中证明四边形是正方形是解题的关键5、(1);(2)【分析】(1)首先设出抛物线的顶点式表达式为,然后将(1,0)代入求解即可;(2)根据二次函数的增减性和对称性可得当,取最大值,当,取最小值,然后代入求解即可【详解】解:(1)由抛物线顶点式表达式得:将(1,0)代入得:,解得:二次函数解析式为:;(2),抛物线对称轴为:,开口向上,当,取最大值,当,取最小值-2,当时,函数值y得取值范围是:【点睛】此题考查了待定系数法求二次函数表达式,二次函数的图像和性质,解题的关键是熟练掌握待定系数法求二次函数表达式,二次函数的图像和性质