《难点解析北师大版九年级数学下册第二章二次函数重点解析试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版九年级数学下册第二章二次函数重点解析试题(含答案及详细解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第二章二次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,抛物线经过点,对称轴l如图所示,则下列结论:;,其中所有正确的结论是( )ABCD2、抛物线y2(x+1)
2、2不经过的象限是()A第一、二象限B第二、三象限C第三、四象限D第一、四象限3、已知二次函数中的与的部分对应值如下表所示012131根据表中的信息,给出下列四个结论:抛物线的对称轴是直线;抛物线的顶点坐标是;当时,的值为;若点,点两个点都在抛物线上,则其中正确结论的个数是( )A1个B2个C3个D4个4、将抛物线向下平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )ABCD5、已知:二次函数yax2bxc(a0)的图象如图所示,下列结论中:abc0;2ab0;abc0;当x1时,y随x的增大而增大;a1,其中正确的项是( )ABCD6、将二次函数的图象沿x轴向左平移2个单位长度,
3、再沿y轴向上平移3个单位长度,得到的函数表达式是( )ABCD7、抛物线的顶点为,且经过点,其部分图象如图所示.对于此抛物线有如下四个结论:;若此抛物线经过点,则一定是方程的一个根其中所有正确结论的序号是( )ABCD8、二次函数的图象开口( )A向下B向上C向左D向右9、下列各式中,是的二次函数的是( )ABCD10、如图,抛物线与x轴交于点,对称轴为直线结合图象分析下列结论:;一元二次方程的两根分别为,;若为方程的两个根,则且其中正确的结论有( )个A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线的顶点坐标是_,图象的开口方向是_2、如果抛物线
4、(其中a、b、c是常数,且a0)在对称轴左侧的部分是下降的,那么a_0(填“”或“”)3、抛物线的顶点坐标是_4、二次函数的图象与x轴有两个交点,则k的取值范围是_5、二次函数,自变量x与函数y的对应值如表:x0123y500512则当时,y满足的范围是_三、解答题(5小题,每小题10分,共计50分)1、二次函数y=ax2+bx+c(a0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c0的解集;(3)求y的取值范围2、已知抛物线yx2+mx+m与x轴交于点A,B(点A在点B的左侧),与y轴交于点C(0,),点P为抛物线在直线A
5、C上方图象上一动点(1)求抛物线的解析式;(2)求PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线yx2+mx+m在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个交点,求图象M的顶点横坐标n的取值范围3、对于二次函数,请回答下列问题:(1)求出此函数图像的顶点坐标;(2)当时,请直接写出的取值范围4、已知抛物线经过点M(1,1),N(2,5)(1)求,的值;(2)若P(4,),Q(,)是抛物线上不同的两点,且,求的值5、已知,如图所示,直线l经过点A(4,0)和B(0,4),它与抛物线yax2在第一象限
6、内交于点P,又AOP的面积为(1)求直线AB的表达式;(2)求a的值-参考答案-一、单选题1、D【分析】根据图像可知二次函数对称轴,可得;有;当时,;当时,;当时,;进而得出结果【详解】解:由图像可知,;故错误当时,;故正确当时,;故正确当时,;故正确故选D【点睛】本题考察了二次函数解题的关键在于求出系数的取值范围,以及一些特殊取值时函数值的大小2、C【分析】根据顶点式写出顶点坐标,开口向上,进而即可求得的答案【详解】解: y2(x+1)2,开口向上,顶点坐标为该函数不经过第三、四象限如图,故选C【点睛】本题考查了图象的性质,根据解析式求得开口方向和顶点坐标是解题的关键3、C【分析】结合题意,
7、根据二次函数的性质,通过列三元一次方程组并求解,即可得到二次函数解析式;根据二次函数图像的性质,对各个选项逐个分析,即可得到答案【详解】根据题意,得: 抛物线的对称轴是直线,故正确;当时,抛物线取最大值 抛物线的顶点坐标是,即正确;当时,的值为,故错误;,抛物线的对称轴是直线时,y随x的增大而增大 ,即正确故选:C【点睛】本题考查了二次函数、三元一次方程组的知识;解题的关键是熟练掌握二次函数图像的性质,从而完成求解4、D【分析】根据抛物线平移的性质计算即可【详解】抛物线的顶点坐标为(0,0)又向下平移3个单位长度,再向右平移5个单位长度此时顶点坐标为(5,-3)移动后抛物线方程为故选:D【点睛
8、】本题考查了抛物线的移动,抛物线在平移的过程中,a的值不发生变化,变化的只是顶点的位置,且与平移方向有关抛物线的移动主要看顶点的移动,的顶点是(0,0),抛物线的平移口诀:自变量加减左右移,函数值加减上下移5、B【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由对称轴0x1,得出b0,故正确;对称轴0x1,-1,a0,-b0,故错误;把x=-1时代入y=ax2+bx+c=a-b+c,结合图象可以
9、得出y0,即a-b+c0,故错误;由图象得,当x1时,y随x的增大而增大,故正确;由图象知,函数图象过(-1,2),(1,0)两点,代入解析式得, 得, ,故正确正确的项是故选:B【点睛】此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值6、D【分析】根据二次函数的平移方法“左加右减,上加下减”可直接进行排除选项【详解】解:由二次函数的图象沿x轴向左平移2个单位长度,再沿y轴向上平移3个单位长度,得到的函数表达式是;故选D【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键7
10、、B【分析】利由抛物线的开口方向和位置可对进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(-1,0),代入解析式则可对进行判断;由抛物线的顶点坐标以及对称轴可对进行判断;抛物线的对称性得出点的对称点是,则可对进行判断【详解】解:抛物线开口向下,a0,抛物线与y轴交于正半轴,c0,故正确;抛物线的顶点为,且经过点,抛物线与x轴的另一个交点坐标为(-1,0),故错误;抛物线的对称轴为直线x=2,即:b=-4a,c=b-a=-5a,顶点,即:,m=-9a,即:,故正确;若此抛物线经过点,抛物线的对称轴为直线x=2,此抛物线经过点,一定是方程的一个根,故错误故选B【点睛】本题考查了二次函
11、数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置8、A【分析】根据二次函数的二次项系数的符号即可判断开口方向【详解】解:二次函数,二次函数的图象开口向下故选A【点睛】本题考查了二次函数的图象的性质,掌握二次函数的图象开口向上,二次函数的图象开口向下是解题的关键9、C【分析】根据二次函数的定义依次判断【详解】解:A、不是二次函
12、数,不符合题意;B、,不是二次函数,不符合题意;C、,是二次函数,符合题意;D、,不是二次函数,不符合题意;故选:C【点睛】此题考查二次函数的定义:形如的函数是二次函数,解题的关键是正确掌握二次函数的构成特点10、C【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可【详解】解:抛物线开口向下,因此a0,对称轴为x=10,因此a、b异号,所以b0,抛物线与y轴交点在正半轴,因此c0,所以abc0,故正确;当x=2时,y=4a+2b+c0,故正确;抛物线与x轴交点(3,0),对称轴为x=1因此另一个交点坐标为(-1,0),所以a-b+c=0,
13、又x=-=1,有2a+b=0,所以3a+c=0,而a0,c0,因此2a+c0,故不正确;由cx2+bx+a=0可得方程的解为和,抛物线与x轴交点(3,0),(-1,0),即方程ax2+bx+c=0的两根为x1=3,x2=-1;, 当时, 3a+c=0,c=-3a,cx2+bx+a=0的两根,x2=-1,故正确;抛物线y=ax2+bx+c与x轴交点(3,0),(-1,0),且a0,因此当y=-2时,相应的x的值大于3,或者小于-1,即m-1,n3,故正确;综上所述,正确的结论有:共4个,故选:C【点睛】本题考查二次函数的图象和性质,掌握二次函数的a、b、c的值决定抛物线的位置是正确判断的关键二、
14、填空题1、(1,5) 开口向上 【分析】由题意根据二次函数y=a(x-h)2+k的图象的开口方向由a决定,a0时开口向上;a0时开口向下以及对称轴为直线x=h和顶点坐标(h,k),进行分析即可【详解】解:a=20,抛物线开口向上,顶点坐标(h,k),顶点坐标(1,5).故答案为:(1,5),开口向上.【点睛】本题考查二次函数的性质,注意掌握抛物线顶点式y=a(x-h)2+k()与顶点坐标(h,k)2、【分析】根据抛物线y=ax2+bx+c在对称轴左侧的部分是下降的,即可得到答案【详解】解:y=ax2+bx+c在对称轴左侧的部分是下降的,函数图象的开口向上,a0,故答案为:【点睛】本题考查二次函
15、数的性质,解答本题的关键是明确题意,利用二次函数的性质解答3、(1,2)【分析】直接根据顶点公式的特点求顶点坐标即可得答案【详解】是抛物线的顶点式,顶点坐标为(1,2)故答案为:(1,2)【点睛】本题主要考查了求抛物线的顶点坐标、对称轴及最值的方法解题的关键是熟知顶点式的特点4、【分析】根据抛物线与x轴有两个交点,可得,列出不等式求解即可【详解】解:二次函数的图象与x轴有两个交点,所以,解得,故答案为:【点睛】本题考查了二次函数与一元二次方程的关系,解题关键是明确抛物线与x轴有两个交点,可得5、【分析】运用待定系数法求出二次函数解析式,判断图象开口方向,求出对应的函数值,从而可判断出y的取值范
16、围【详解】解:取(-3,0),(-2,-3),(0,-3)代入,得 解得, 函数图象开口向上,对称轴为直线,顶点坐标为(-1,-4)当时, 当时,y满足的范围是故答案为:【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解数形结合是解题的关键三、解答题1、(1)5和1;(2)5x1;(3)y9【分析】(1)根据二次函数的图像与轴的交点,即可求解;(2)根据二次函数的图像,即可求解;(3)求得二次函数的解析式,根据二次函数的性质求得最大值,即可求解【详解】解:(1)如图所示:方程ax2+bx+c=0
17、的两个根为:5和1;(2)如图所示:不等式ax2+bx+c0的解集为:;(3)抛物线与坐标轴分别交于点A(5,0),B(1,0),C(0,5),设抛物线解析式为:,抛物线过点C(0,5),解得:,抛物线解析式为:,当时,y的取值范围为:【点睛】此题考查了二次函数的图像与性质,二次函数与一元二次方程、一元二次不等式之间的关系,解题的关键是掌握并灵活运用相关性质进行求解2、(1);(2)当时,取得的最大值,最大值为;(3)或【分析】(1)将点C(0,)代入抛物线解析式直接求解即可;(2)先求出A点坐标,以及直线AC的解析式,再过P点作PQx轴,交AC于Q点,通过设P、Q两点的坐标,建立出关于的二次
18、函数表达式,然后结合二次函数的性质求出其最值,并求出此时对应的P点坐标即可;(3)先根据题意画出基本图像G,然后结合平移的性质确定B点的运动轨迹,以及其直线解析式,根据题目要求和平移的性质可以确定点B平移至恰好在PC上时,以及图象G与直线AC的交点R,经过平移至C点时,满足要求,应注意,当A点平移后经过C点时,此时也可满足图象M与PC仅有一个交点,即为C点,此情况应单独求解【详解】解:(1)将点C(0,)代入抛物线解析式得:,解得:,抛物线解析式为:;(2)抛物线与x轴交于A、B两点,令,解得:,A、B坐标分别为:,设直线AC的解析式为:,将和代入得:,解得:,直线AC的解析式为:,如图所示,
19、过P点作PQx轴,交AC于Q点,P点在位于直线AC上方的抛物线上,设,则,其中,抛物线开口向下,当时,取得的最大值,最大值为,此时,将代入抛物线解析式得:,当时,取得的最大值,最大值为;(3)如图所示,抛物线yx2+mx+m在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G由(1)可知,原抛物线顶点坐标为,沿x轴向下翻折后,图象G的顶点坐标为,图象G的解析式为:;图象G沿着直线AC平移,作直线BSAC,交PC于S点,则随着平移过程,点B在直线BS上运动,分如下情况讨论:当图象G沿直线AC平移至B点恰好经过S点时,如图中M1所示,此时,平移后的图象M恰好与线段PC有一个交点,即为S点,
20、由(2)知,以及直线AC的解析式为,设直线BS的解析式为:,将代入得:,直线BS的解析式为:;设直线PC的解析式为:,将,代入得:,解得:,直线PC的解析式为:;联立,解得:,即:S点的坐标为,此时点平移至,等同于向左平移个单位,向上平移个单位,即:当平移后的图象M与线段PC恰好仅有一个交点时,可由原图像G向左平移个单位,向上平移个单位,原图像G的顶点坐标为:,平移后图象M1的顶点的横坐标;当图象G沿直线AC平移至恰好经过C点时,如图中M2所示,设图象G与直线AC的交点为R,联立,解得:或,点R的坐标为:,由平移至,等同于向右平移2个单位,向下平移1个单位,当平移后的图象M与线段PC恰好仅有一
21、个交点时,可由原图像G向右平移2个单位,向下平移1各单位,原图像G的顶点坐标为:,平移后图象M2的顶点的横坐标;当图象G在M1和M2之间平移时,均能满足与线段PC有且仅有一个交点,此时,图象M的顶点横坐标n的取值范围为:;当图象G沿直线AC平移至A点恰好经过C点时,如图中M3所示,此时,由平移至,等同于向右平移5个单位,向下平移个单位,即:原图像G向右平移5个单位,向下平移个单位,得到图象M3,原图像G的顶点坐标为:,平移后图象M3的顶点的横坐标;综上所述,当新的图象M与线段PC只有一个交点时,图象M的顶点横坐标n的取值范围为:或【点睛】本题考查二次函数综合问题,包括图象的翻折变换和平移变换等
22、,掌握二次函数的基本性质,翻折和平移变换的性质,以及准确分类讨论是解题关键3、(1)(-1,-4);(2)【分析】(1)把二次函数解析式化为顶点式求解即可;(2)先求出抛物线对称轴为直线,推出当x-1时,y随x增大而增大,当x-1时,y随x增大而增大,当x-1时,y随x增大而减小,抛物线的最小值为-4,当时,当时,当2x2时,【点睛】本题主要考查了求二次函数顶点坐标,二次函数的函数值取值范围,解题的关键在于能够熟练掌握二次函数的相关知识4、(1)(2)【分析】(1)利用待定系数法求解即可;(2)判断出点P(4,),Q(,)是抛物线上的对称点,利用二次函数的对称性,即可求解(1)解:由抛物线经过
23、M(1,1),N(2,5)两点,得 ,解这个方程组,得;(2)解: P(4,),Q(,)是抛物线上不同的两点,且 , 点P(4,),Q(,)是抛物线上的对称点,抛物线的对称轴为,【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的性质,正确的理解题意是解题的关键5、(1);(2)【分析】(1)利用待定系数法即可求得直线的解析式;(2)先根据面积求得点的纵坐标,再代入直线的解析式可得其横坐标,然后将点的坐标代入二次函数即可得【详解】解:(1)设直线的解析式为,将点代入得,解得,故直线的表达式为;(2)如图,过点作轴于点,设点的坐标为,则,的面积为,解得,将点代入得:,解得,则,将点代入得:,解得,故的值为【点睛】本题考查了二次函数与一次函数的综合等知识点,熟练掌握待定系数法是解题关键