精品试题北师大版九年级数学下册第二章二次函数必考点解析试题(名师精选).docx

上传人:可****阿 文档编号:32554261 上传时间:2022-08-09 格式:DOCX 页数:25 大小:600.29KB
返回 下载 相关 举报
精品试题北师大版九年级数学下册第二章二次函数必考点解析试题(名师精选).docx_第1页
第1页 / 共25页
精品试题北师大版九年级数学下册第二章二次函数必考点解析试题(名师精选).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《精品试题北师大版九年级数学下册第二章二次函数必考点解析试题(名师精选).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版九年级数学下册第二章二次函数必考点解析试题(名师精选).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若A(-6,y1),B(-3,y2),C(1,y3)为二次函数图象上的三点,则y1,y2,y3的大小关系是(

2、)Ay2y3y1By1y2y3Cy3y1y2Dy2y1y32、已知二次函数(m为常数),当时,函数值y的最小值为-2,则m的值为( )AB或C或D或3、在同一平面直角坐标系xOy中,一次函数y2x与二次函数的图象可能是()ABCD4、已知二次函数的图象如图所示,在下列五个结论中:;其中正确的个数有( )A1个B2个C3个D4个5、如图,线段AB5,动点P以每秒1个单位长度的速度从点A出发,沿线段AB运动至点B,以点A为圆心,线段AP长为半径作圆设点P的运动时间为t,点P,B之间的距离为y,A的面积为S,则y与t,S与t满足的函数关系分别是( )A正比例函数关系,一次函数关系B一次函数关系,正比

3、例函数关系C一次函数关系, 二次函数关系D正比例函数关系,二次函数关系6、二次函数的图象与轴的交点的横坐标分别为-1和3,则的图象与轴的交点的横坐标分别为( )A-3和1B1和5C-3和5D3和57、在平面直角坐标系中,点M的坐标为(m,m2 - bm),b为常数且b 3若m2 - bm 2 - b,m ,则点M的横坐标m的取值范围是 ( )A0 m Bm C m Dm 0,由抛物线的对称轴为直线x=-0得b0,判断;由抛物线与y轴的交点在x轴上方得c0判断,利用图象将x=1,-1,2代入函数解析式判断y的值,进而对所得结论进行判断【详解】解:抛物线开口向上,a0,抛物线的对称轴x=-0,b0

4、,-1,2a-b,2a-b-2b,b0,-2b0,即2a-b0,故错误;抛物线与y轴的交点在x轴下方,c0,故正确;当x=2时,y=4a+2b+c0,故正确,故错误的有3个故选:C【点睛】本题考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键5、C【分析】根据题意分别列出y与t,S与t的函数关系,进而进行判断即可【详解】解:根据题意得,即,是一次函数;A的面积为,即,是二次函数故选C【点睛】本题考查了列函数表达式,一次函数与二次函数的识别,根据题意列出函数表达式是解题的关键6、A【分析】根据二次函数图象的平移规律可得交点的横坐标【详解】解:二次函数的图象与x轴的交点的横坐标分别为-

5、1和3的图象与x轴的交点的横坐标分别为:-1-2-3和3-21故选:A【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用平移的性质和点的坐标平移的性质解答7、B【分析】由m2 - bm 2 - b,得到m2 - bm - 2 +b=0,因式分解得,进而判断出,故当m2 - bm - 2 +b0时,或,再由,且,可知无解,即可求解.【详解】m2 - bm 2 - b, m2 - bm - 2 +b0,令m2 - bm - 2 +b=0,则,则或,解得:,二次函数y= x2 - bx - 2 +b,开口向上,与x轴交点为x1,x2,(且x10时,xx2,令x=m,则y= m2 -

6、bm - 2 +b=0,解得,即,当m2 - bm - 2 +b0时,或,则,且,无解,故选:B【点睛】此题考查了因式分解法解一元二次方程,二次函数的图象的性质,对进行取值范围的确定是解答此题的关键.8、C【分析】结合题意,根据二次函数的性质,通过列三元一次方程组并求解,即可得到二次函数解析式;根据二次函数图像的性质,对各个选项逐个分析,即可得到答案【详解】根据题意,得: 抛物线的对称轴是直线,故正确;当时,抛物线取最大值 抛物线的顶点坐标是,即正确;当时,的值为,故错误;,抛物线的对称轴是直线时,y随x的增大而增大 ,即正确故选:C【点睛】本题考查了二次函数、三元一次方程组的知识;解题的关键

7、是熟练掌握二次函数图像的性质,从而完成求解9、D【分析】由抛物线开口向上可知,由抛物线配方为,可得抛物线的对称轴为,顶点纵坐标为,据此结合图象可得答案【详解】解:抛物线的开口向上下,抛物线的对称轴为直线,应选择的轴为直线;顶点坐标为,抛物线与轴的交点为,而,应选择的轴为直线,故选:D【点睛】本题考查了二次函数的图象,解题的关键是理解掌握二次函数的图象与各系数的关系是解题的关键,同时注意数形结合思想的运用10、D【分析】根据二次函数的图象和性质解答即可【详解】解:由抛物线:可知:抛物线开口向上,对称轴为直线x=1,顶点坐标为(1,4),如图,当x=1时,y=0,当x=4时,y=5,抛物线与直线y

8、=m只有一个交点,0m5或m=4,整数m=0或1或2或3或4或5或4,即整数m的值有7个,故选:D【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解答的关键二、填空题1、【分析】首先判定出二次函数开口向上,对称轴为,然后根据二次函数的增减性求解即可【详解】解:二次函数(h、k均为常数),二次函数开口向上,对称轴为,图象经过A(2,y1)、B(0,y2)、C(2,y3)三点,由y2y1y3可得,点A离对称轴比点B离对称轴远,点C离对称轴比点A离对称轴远,解得:故答案为:【点睛】此题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质2、2【分析】知的最大值在时

9、取得,值为【详解】解:根据函数图像性质可知在时,最大且取值为故答案为:【点睛】本题考查了二次函数实际应用中的最值问题解题的关键将二次函数化成顶点式3、【分析】当时,一次函数的图像在二次函数的图像的下方,利用函数图像可以得到自变量的取值范围,即不等式的解集【详解】解:联立方程组,解得,直线与抛物线的交点为: 当时,一次函数的图像在二次函数的图像的下方,所以此时:故答案为:【点睛】本题考查的是利用图像法求不等式的解集,掌握利用二次函数与一次函数的图像写不等式的解集是解题的关键4、描点 向上 y轴 向上 y轴 【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标

10、即可【详解】解:通过描点法画出和的图像,通过图像可知:的开口方向向上,对称轴为轴,顶点坐标为,的开口方向向上,对称轴轴,顶点坐标,故答案为:描点;向上;y轴;向上;y轴;【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键5、【分析】根据题意直接利用二次函数平移规律即“上加下减,左加右减”的原则进行分析即可得出平移后解析式【详解】解:将抛物线y(x+1)23向右平移1个单位,再向上平移2个单位长度,得到的抛物线解析式为,化简得:.故答案为:.【点睛】本题考查二次函数图象的平移与几何变换,熟练掌握并利用抛物线解析式的变化规律:左加右减,上加下减进行分析是解

11、题的关键三、解答题1、(1);(2)8;(3)能,点的坐标为或【分析】(1)先利用求解的坐标,再利用待定系数法求解抛物线的解析式即可;(2)设点,则点,再求解 列二次函数关系式,利用二次函数的性质求解面积的最大值即可.(3)如图,连接,由线段与相互平分,可得四边形是平行四边形,则有,再列方程,解方程可得答案.【详解】解:(1) 轴,点, ,又抛物线经过, 解得: 抛物线的解析式为 (2)设点,则点, ,时,; (3)线段与能相互平分理由如下:如图,连接线段与相互平分,四边形是平行四边形, ,或当时,则 为的中点,点的坐标为当时, 则 为的中点,点的坐标为点的坐标为或【点睛】本题考查的是利用待定

12、系数法求解二次函数的解析式,二次函数的性质,二次函数与平行四边形,掌握“列面积的二次函数关系式,利用对角线互相平分得到平行四边形,再利用平行四边形的对边相等列方程”是解本题的关键.2、(1)的值为;(2),新函数过定点;的取值范围为:或或【分析】(1),即可求解;(2)翻折后的抛物线的解析式的顶点不变,开口相反,可得新函数的表达式,当时,即可求解;当时,如上图实线部分,新函数图象与线段只有一个公共点,则函数不过点,即;当时,同理可得:,即可求解【详解】解:(1),即函数图象与轴只有一个公共点时,的值为;(2),顶点坐标为,图像翻折后,顶点坐标不变,开口向下,翻折后抛物线的表达式为:,故答案为:

13、;当时,故新函数过定点;设定点为,而点、,即点、在同一直线上,新抛物线的对称轴为,当时,如上图实线部分,新函数图象与线段只有一个公共点,则函数不过点,即,当时,同理可得:,从图象看,当时,也符合题意,故的取值范围为:或或【点睛】此题是抛物线的交点坐标题,主要考查抛物线与直线的交点,解本题的关键是画出图象,分析抛物线与线段只有一个交点是解本题的难点3、(1)100010x,10x2+1300x30000;(2)最大利润为12000元【分析】(1)根据销售量y60020(x40)2,再根据利润销售量每件的利润,即可解决问题(2)首先根据题意确定自变的取值范围,再根据二次函数的性质,即可解决问题【详

14、解】解:(1)y60020(x40)2100010x,w(100010x)(x30)10x2+1300x30000故答案为100010x,10x2+1300x30000(2)w10x2+1300x3000010(x65)2+12250,100010x400,x60,44x60,-100,对称轴是直线x=65,此时y随x的增大而增大,当x60时,最大利润为:w10(6065)2+12250=12000元【点睛】本题考查二次函数的应用,解题的关键是理解题意,搞清楚销售量与售价之间的关系,学会构建二次函数解决最值问题,注意自变量的取值范围,属于中考常考题型4、(1);(2)直线【分析】(1)利用待定

15、系数法求解析式即可;(2)利用对称轴公式求解即可【详解】解:(1)二次函数yx22mx5m的图象经过点(1,2), 212m5m, 解得; 二次函数的表达式为yx22x5(2)二次函数图象的对称轴为直线;故二次函数的对称轴为:直线;【点睛】本题考查了求二次函数解析式和对称轴,解题关键是熟练运用待定系数法求解析式,熟记抛物线对称轴公式5、(1);(2)【分析】(1)求出抛物线的对称轴直线,根据AB=2求出A、B点坐标,代入函数关系式求出m的值即可;(2)求出函数图象的顶点坐标,根据“对于每一个x值,它所对应的函数值都不小于1”列出不等式,求出m的取值范围即可【详解】解:(1)二次函数图象的对称轴为直线,A,B两点在x轴上(点A在点B的左侧),且AB=2,A(,),B(,)把点(,)代入中,.(2)对称轴为直线,二次函数图象顶点坐标为(2,),二次函数图象的开口方向向上,二次函数图象有最低点,若对于每一个x值,它所对应的函数值都不小于1,【点睛】本题考查的是二次函数与数轴的交点问题,熟练掌握二次函数的图象与性质是解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁