《2022年福建省中考数学试卷-教师用卷.pdf》由会员分享,可在线阅读,更多相关《2022年福建省中考数学试卷-教师用卷.pdf(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年福建省中考数学试卷题号一二三总分得分一、选 择 题(本大题共10小题,共40.0分)1.一11的相反数是()A.一11 B.春 C.D.11【答案】D【解析】解:-(-11)=11.故选:D.应用相反数的定义进行求解即可得出答案.本题主要考查了相反数,熟练掌握相反数的定义进行求解是解决本题的关键.2.如图所小的圆柱,其俯视图是()B.主视方向【答案】A【解析】解:根据题意可得,圆柱的俯视图如图,故选:A.应用简单几何体的三视图判定方法进行判定即可得出答案.本题主要考查了简单几何体的三视图,熟练掌握简单几何体的三视图的判定方法进行求解是解决本题的关键.3.5G应用在福建省全面铺开,助力
2、千行百业迎“智”变.截 止2021年底,全省5G终端用户达1397.6万户.数据13976000用科学记数法表示为()A.13976 x 103 B.1397.6 x 104 C.1.3976 x 107 D.0.13976 x 108【答案】C【解析】解:13976000=1.3976 X 107.故选:C.应用科学记数法:把一个大于10的数记成a x ion的形式,其中a 是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a x lO%其中i w a i o,正 为正整数.】本题主要考查了科学记数法-表示较大的数,熟练掌握科学记数法-表示较大的数的方法进行求解
3、是解决本题的关键.4.美术老师布置同学们设计窗花,下列作品为轴对称图形的是()【答案】A【解析】解:选项氏 C、。不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A 能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如 图,数轴上的点P表示下列四个无理数中的一个,这个无理数是()I P I、-2-
4、10123A.-V 2 B.V2 C.V5 D.n【答案】B【解析】解:根据题意可得,1 P 2,v 1 V2 1 B,1 x 3 C.1%3 D.%世,由得:%1,由得:x 3,.不等式组的解集为1 x W 3.故选:C.分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.7.化简(3a2)2的结果是()A.9a2 B.6a2 C.9a4 D.3a4【答案】C【解析】解:(3a2)2=9a4.故选:C.应用积的乘方运算法则进行求解即可得出答案.本题主要考查了积的乘方,熟练掌握积的乘方运算法则进行求解是解决本题的关键.
5、8.2021年福建省的环境空气质量达标天数位居全国前列.如图是福建省10个地区环境空气质量综合指数统计图.综合指数综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是()A.6【答案】B.F6c.F7D.FIQD【解析】解:根据题意可得,地区环境空气质量综合指数约为1.9,是10个地区中最小值.故选:D.根据折线统计图的信息进行判定即可得出答案.本题主要考查了折线统计图,根据题意读取折线统计图中的信息进行求解是解决本题的关键.9.如图所示的衣架可以近似看成一个等腰三角形力B C,其中AB=A C,乙ABC=27。,BC=4 4 cm,则高AD约为()(参考数据:
6、sin27 0.45,cos27 0.89,tan27 0.51)A.9.90cmB.11.22cmC.19.58cmD.22.44cm【答案】B【解析】解:48=4C,BC=44cm,BD=CD 22cm,AD BC,v/.ABC=27,A H tan乙4BC=第 0.51,DDAD=0.51 x 22=11.22cm,故选:B.根据等腰三角形性质求出B D,根据角度的正切值可求出AD.本题考查了等腰三角形的性质,三角函数的定义,掌握三角形函数的定义是解题关键.10.如图,现有一把直尺和一块三角尺,其中=9 0 ,乙CAB=60,AB=8,点4对应直尺的刻度为12.将该三角尺沿着直尺边缘平移
7、,使得AABC移动到4 B C,点A 对应直尺的刻度为0,则四边形ACCA的面积是()A.9 6 B.9 6 遍 C.19 2 D.16 0遍【答案】B【解析】解:在R t A A B C 中,/.CAB=6 0,AB=8,则BC=AB-t a n 4 c AB=8 7 3,由平移的性质可知:AC=A C,AC/A C,二 四边形4 C C W 为平行四边形,点4 对应直尺的刻度为1 2,点4对应直尺的刻度为0,AA=12,S四边形ACC,A,=12 X 8 V 3 =9 6 同故选:B.根据正切的定义求出B C,证明四边形4 CC4 为平行四边形,根据平移的性质求出4 4 =1 2,根据平行
8、四边形的面积公式计算,得到答案.本题考查的是平移的性质、平行四边形的判定和性质以及解直角三角形,得出四边形4 CCZ 为平行四边形是解题的关键.二、填 空 题(本大题共6小题,共 2 4.0分)11.四边 形 的 外 角 和 度 数 是.【答案】3 6 0【解析】解:四边形的外角和度数是3 6 0。,故 答 案 为:3 6 0。.根据多边形的外角和都是3 6 0。即可得出答案.本题考查了多边形的内角与外角,掌握多边形的外角和都是3 6 0。是解题的关键.12.如图,在AABC中,D,E分 别 是 的 中 点.若BC=12,则DE的长为.【答案】6【解析】解:),E分别是4 B,4 C的中点,D
9、E为 ABC的中位线,DE=2 BC=g x 12 =6.故答案为:6.直接利用三角形中位线定理求解.本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.13.一个不透明的袋中装有3个红球和2个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,这 个 球 是 红 球 的 概 率 是.【答案】35【解析】解:根据题意可得,P(4)=(故答案为:应用简单随机事件的概率计算方法进行计算即可得出答案.本题主要考查了概率公式,熟练掌握简单随机事件的概率计算方法进行求解是解决本题的关键.14 .已知反比例函数y =;的图象分别位于第二、第四象限,则实数k的 值 可 以 是.
10、(只需写出一个符合条件的实数)【答案】一 3(答案不唯一)【解析】解:该反比例图象经过第二、四象限,k 0,.k取值不唯一,可取一 3,故答案为:-3(答案不唯一).根据图象经过第二、四象限,易知k AD=1+V n+1-(-1 -Vn+1)=2+2Vn+l,FC=-1 +Vn+1-(1-V n+1)=-2+2Jn+1 2+27 Tl+1=2(-2+1),n=8,故答案 为:8.先判断出了抛物线与x轴 的 两交点坐标,进而求出ZD,B C,进而建立方程,求解即可求出答案.此题主要考查了抛物线的性质,抛物线与x轴交点的求法,表示出点4 B,C,。的坐标是解本题的关键.三、解 答 题(本 大 题
11、共9小 题,共86.0分)17,计-算:V4+|V 3-1|-2022.【答 案】解:原式=2 +7 5-1-1 =遍.【解 析】应用零指数基,绝 对 值,算术平方根的计算方法进行计算即可得出答案.本题主要考查了零指数器,绝 对 值,算术平方根,熟练掌握零指数累,绝对值,算术平方根的计算方法进行求解是解决本题的关键.18.如 图,点B,F,C,E在同一条直线上,BF=EC,AB=DE,NB=NE.求证:AA=ZD.【答 案】证 明:BF=EC,BF+CF=EC+CF,即 BC=EF,在4 B C和D E F中,AB=DEZ-B=Z.E,h e =EF.*.ABC=L D E F(S4 S),:
12、.Z-A=Z-D.【解析】利用SA S证明 A B C三 D E F,根据全等三角形的性质即可得解.此题考查了全等三角形的判定与性质,利用S4 s证明A B C w a D E F是解题的关键.1 9.先化简,再求值:(1+;)一,其中a =&+l.【答案】解:原式=Ql+(a+l)(aT)aa+1 aQ(a+l)(a1)1a f当Q=yj2+1时,原式=r-=vZ+11 2【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,平方差公式,因式分解-运用公式法,以及二次根式的性质与化简,熟练掌握运
13、算法则及公式是解本题的关键.2 0 .学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取5 0名同学,调查他们一周的课外劳动时间t(单位:八),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取5 0名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中4组为0 t 1,B组为1 W t 2,C组为2 t 3,。组为3 t 4,E组为4 W t 5,F组为t 2 5.(1)判断活动前、后两次调查
14、数据的中位数分别落在哪一组;(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于3%的人数.【答案】解:(1)把第1次调查的50名学生课外劳动时间从小到大排列,处在中间位置的两个数,即处在第25、第26位的两个数都落在C组,因此第1次调查学生课外劳动时间中位数在C组;把第2组调查的50名学生课外劳动时间从小到大排列各个分组,计算所占百分比的和,和为50%在。组,因此第2次调查学生课外劳动时间的中位数在。组;(2)2000 x(30%+24%+16%)=1400(人),答:该校学生一周的课外劳动时间不小于3h的人数大约是1400人.【解析】(1)根据中位数的
15、定义进行判断即可;(2)根据第2次课外劳动时间不小于3h所占调查总人数的百分比,进行计算即可.本题考查条形统计图、扇形统计图、中位数,掌握条形统计图、扇形统计图的意义以及中位数的计算方法是解决问题的前提.21.如图,AABC内接于。,AD8 c交。于点D,交BC于点E,交。0 于点F,连接4F,CF.(1)求证:AC=AF;(2)若。的半径为3,Z.CAF=3 0 ,求泥的长(结果保留兀).【答 案】(1)证 明:-AD/BC,DF/AB,四边形ABED是平行四边形,乙B=Z.D,v Z.AFC=Z.ACF=Z D,Z.AFC=Z-ACF,4C=AF.(2)解:连接A。,CO,由(1)得乙4汽
16、?=乙4CF,v Z.AFC180。-30。275,Z,AOC=2Z.AFC=150,代 的 长I150 x7ix3 _ 5兀 180【解 析】【分析】本题主要考查了等腰三角形的判定与性质,平行四边形的判定与性质,圆的性质与弧长公式,考查化归与转化思想,推理能力,几何直观等数学素养.(1)根据已知条件可证明四边形4BCD是平行四边形,由平行四边形的性质可得N8=N D,等量代换可得乙4/C=乙4 C F,即可得出答案;(2)连接A。,C。,由中结论可计算出 F C 的度数,根据圆周角定理可计算出N40C的度数,再根据弧长计算公式计算即可得出答案.22.在学校开展“劳动创造美好生活”主题系列活动
17、中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.【答案】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:葭工箕期解得:J z l8-v 8 x 2=16,16 2(46 m),解 得:m .设购买两种绿植的总费用为w元,则w=9m 4-6(46-m)=3m-I-276,v 3 0,.w随血的增大而增大
18、,又之 半,且M为整数,.当 m=31时,w取得最小值,最小值=3 x 31+276=369.答:购买两种绿植总费用的最小值为369元.【解析】(1)设购买绿萝x盆,吊兰y盆,利用总价=单价x 数量,结合购进两种绿植46盆共花费390元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买绿萝ni盆,则购买吊兰(46-m)盆,根据购进绿萝盆数不少于吊兰盆数的2倍,即可得出关于m的一元一次不等式,解之即可得出租的取值范围,设购买两种绿植的总费用为w元,利用总价=单价x 数量,即可得出w关于zn的函数关系式,再利用一次函数的性质,即可解决最值问题.本题考查了二元一次方程组的应用、一元
19、一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.23.如图,8。是矩形ABC。的对角线.(1)求作使得。A与 相 切(要 求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与0 4 相切于点E,CF_LBD,垂足为F,若直线CF与。4相切于点G,求tan乙4OB的值.【答案】解:(1)根据题意作图如下:8。与。4相切于点,CF与。/相切于点G,:AE 1 BD,AG 1 CG,艮|JNAE 尸=Z.AGF=90,v CF 1 BD,Z.EFG=90,四边形4EFG是矩形,又
20、4E=AG=r,四边形AEFG是正方形,.EF=AE=r,在R A E B R t 中,乙BAE+乙ABD=9 0 ,4ADB+Z-ABD=90,.Z.BAE=Z.ADB=a,在Rt/kABE中,tan4BAE=笑AE,.BE=r-tana,四边形/BCD是矩形,AB/CD,AB=CD,:.Z-ABE=乙CDF,又乙 AEB=CFD=90,ABE=L CDF,:.BE=DF=r-tana,.DE=DF+EF=r-tana+r,在RM 4DE中,tanzjWE=,DE即。E-tana=AE,r tana 4-r=r,即 tan2a+tana-1=0,v tana 0,V5 1 tana=,即ta
21、n乙4。8的值为垦1.2【解析】(1)以4为圆心4B长为半径画弧交BD与M,作BM的垂直平分线,交BD与N,以4为圆心4N为半径画圆即为所求;(2)设乙4D8=a,O 4的半径为r,证四边形4EFG是正方形,根据445证4力CDF,得出BE=DF=r-tana,DE=DF+EF=r-tana+r,根据等量关系列出关系式求出tana的值即可.本小题考查直角三角形的性质,特殊平行四边形的判定与性质,圆的概念与性质,锐角三角函数、一元二次方程等基础知识,考查尺规作图技能,考查函数与方程、化归与转化等数学思想方法,考查推理能力,运算能力、空间观念与几何直观、创新意识等数学素养,渗透数学文化.24.已知
22、 ABC三)1(7,AB=AC,AB BC.(1)如图1,CB平分4 C D,求证:四边形4BDC是菱形;(2)如图2,将(1)中的CDE绕点C逆时针旋转(旋转角小于NB2C),BC,DE的延长线相交于点F,用等式表示乙4CE与NEFC之间的数量关系,并证明;(3)如图3,将中的小CCE绕点C顺时针旋转(旋转角小于Z4BC),若4BAD=4BCD,求心ADB的度数.【答案】(1)证明:A B C m A DEC,AC=DC,.AB=AC9*.Z.ABC=乙ACB,AB=DC,v CB平分乙4CD,:.Z-DCB=Z-ACB,:.Z.ABC=乙DCB,:AB C D,,四边形ABDC为平行四边形
23、,:AB=AC,平行四边形力BDC为菱形;(2)解:LACE+Z.EFC=180,理由如下:ABCwDEC,:.Z-ABC=乙DEC,:.Z-ACB=乙DEC,ZLACB+/.ACF=乙DEC+Z.CEF=180,Z-CEF ZJ1CF,v 乙CEF+乙ECF+Z.EFC=180,A Z-ACF+乙ECF+乙EFC=180,Z,ACE+乙EFC=180;(3)解:如图3,在4D上取点M,使AM=8。,连接BM,在AAMB和CBD中,(AM=BC BAM=乙 DCB,AB=CD 4MBwZkCBD(S4S),:BM=B D,4ABM=CDB,:.(BMD=4BDM,v 乙BMD=Z.BAD+Z-
24、MBA,Z,ADB=(BCD+乙BDC,设匕BCD=/BAD=a,乙BDC=0,贝 ij44DB=a+,v CA=CD,Z.CAD=乙CD A=a+2/7,:.Z-BAC-Z.CAD 4BAD=2夕,AACB=|X(180-2)=90。-S,ACD=9 0 -+a,ACD+乙 CAD+ACDA=180,90-/?+a+a+2/?+a+2/?=180,图3-.a+p=3 0 ,即NADB=30。.【解析】(1)根据全等三角形的性质得到4C=D C,根据角平分线的定义得到NCCB=N 4C B,证明四边形4BCD为平行四边形,根据菱形的判定定理证明结论;(2)根据全等三角形的性质得到乙48c=LD
25、 E C,根据三角形内角和定理证明即可;(3)在4。上取点M,使AM=BC,连接BM,证明 AMBmA CBD,得到BM=BD,4ABM=乙CDB,根据三角形的外角性质、三角形内角和定理计算,得到答案.本题考查的是旋转变换、菱形的判定、等腰三角形的性质、全等三角形的判定和性质,证明AMB=h C8。是解题的关键.25.在平面直角坐标系xOy中,已知抛物线y=a/+bx经过4(4,0),B(l,4)两 点.P是抛物线上一点,且在直线的上方.(1)求抛物线的解析式;(2)若4 OAB面积是 PA8面积的2倍,求点P 的坐标:(3)如图,0P交2B于点C,PDBO交AB于点D.记ACDP,4CPB,
26、CBO的面积分另IJ为SS2,S3.判 断 是 否 存 在 最 大 值.若 存 在,求出最大值;若不存在,请说明理由.【答案】解:将 4(4,0),8(1,4)代入 y=ax2+bx,16a+4b=0a+b=44a =3,16,解得 抛物线的解析式为:y=-1 x2+y x.(2)设直线AB的解析式为:y=kx+t,将4(4,0),8(1,4)代入丫=依 +3.4/c+t=0 u+1=4 解得 4(4,0),B(l,4),S kOAB=5、4 x 4 =8:SOHB=2SPAB=8,即SN4B=4,过点P作PM,轴于点M,PM与/B 交于点N,过点B作B E上PM于点E,如图,113,PAB
27、SPNB+SPNA=2 PN x BE+2 PN x AM=-PN=4fo .PN=设点P的横坐标为m,P(m,-m2+y m)(l m 4),4-y),nA 7.PN =-4 2+,可16 m ,(一 4 m+I 16)、=8解得m=2或TH=3;r(2年)或(3,4).(3)PD/OB,zJDPC=乙BOC,Z.PDC=Z.OBC,DPCL BOC,A CP:CO=CD:CB=PD:OB,.i _ CD_CP_.五 一 而 而 一而,.%S2 _ 2PD S3 OB-设直线4B交y轴于点F.则尸(0,第,过点P作PH l x轴,垂足为H,PH交AB于点G,如图,:.Z-PDG=乙O B F
28、,v PG/OF,:.Z-PGD=乙O F B,.PDG OBF,;P D:OB=P G:OF,设P(几 2 +y n)(l n 4),由(2)可 知,PG=+y n -y,.,5 2 =2 P D =2 P=3 lf 5 2 9.S 2 +S 3 OB OF 2 5 2)+8.v 1 n 4,当几=?时,的最大值为小2 5 2 b 3 8【解析】(1)将点4 8 的坐标代入二次函数的解析式,利用待定系数法求解即可;(2)利用待定系数法求出直线4 8 的解析式,过点P 作P M l x 轴于点M,P M与4 8 交于点N,过点B 作BELPM于点E,可分另I J 表达 O A B 和a P A B 的面积,根据题意列出方程求出P N 的长,设出点P 的坐标,表达P N 的长,求出点P 的坐标即可;由三角形面积的“背靠背模型”可得与+=黑+冻.本题考查一次函数和二次函数的图象与性质、三角函数、三角形面积、相似三角形的判定与性质等基础知识,考查数形结合、函数与方程,函数建模等数学思想方法,考查运算能力、推理能力、空间观念与几何直观、创新意识等数学素养.