人教B版数学选修2-2第二章推理与证明测试第2章 2.3.doc

上传人:蓝**** 文档编号:95862604 上传时间:2023-09-03 格式:DOC 页数:6 大小:96KB
返回 下载 相关 举报
人教B版数学选修2-2第二章推理与证明测试第2章 2.3.doc_第1页
第1页 / 共6页
人教B版数学选修2-2第二章推理与证明测试第2章 2.3.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《人教B版数学选修2-2第二章推理与证明测试第2章 2.3.doc》由会员分享,可在线阅读,更多相关《人教B版数学选修2-2第二章推理与证明测试第2章 2.3.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第二章2.3一、选择题1用数学归纳法证明1qq2qn1(nN*,q1),在验证n1等式成立时,等式左边的式子是()A1B1qC1qq2D1qq2q3答案C解析左边1qq111qq2.故选C.2用数学归纳法证明(n1)(n2)(n3)(nn)2n13(2n1)(nN*),从nk到nk1,左边的式子之比是()A.BC.D答案B解析 .故选B.3用数学归纳法证明(n2,nN*)的过程中,由nk递推到nk1时不等式左边()A增加了一项B增加了两项C增加了B中两项但减少了一项D以上各种情况均不对答案C解析nk时,左边,nk1时,左边增加了,减少了一项.故选C.4设平面内有k条直线,其中任何两条不平行,任

2、何三条不共点,设k条直线的交点个数为f(k),则f(k1)与f(k)的关系是()Af(k1)f(k)k1Bf(k1)f(k)k1Cf(k1)f(k)k2Df(k1)f(k)k答案D解析因为任何两条不平行,任何三条不共点,所以当增加一条直线时,则增加k个交点,故交点个数为f(k)k.5某个与正整数n有关的命题,如果当nk(kN*)时该命题成立,则可推得nk1时该命题也成立,现已知n5时命题不成立,那么可推得()A当n4时该命题不成立B当n6时该命题不成立C当n4时该命题成立D当n6时该命题成立答案A解析由命题及其逆否命题的等价性知选A.6等式122232n2(5n27n4)()An为任何正整数都

3、成立B仅当n1,2,3时成立C当n4时成立,n5时不成立D仅当n4时不成立答案B解析经验证,n1,2,3时成立,n4,5,不成立故选B.7(2015枣庄一模)用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上()Ak21B(k1)2C.D(k21)(k22)(k23)(k1)2答案D解析当nk时,左边123k2.当nk1时,左边123k2(k21)(k1)2,当nk1时,左端应在nk的基础上加上(k21)(k22)(k23)(k1)2.8用数学归纳法证明“n3(n1)3(n2)3(nN*)能被9整除”,要利用归纳假设证nk1时的情况,只需展开()A(k3)3B(k2)3C(k1)

4、3D(k1)3(k2)3答案A解析因为从nk到nk1的过渡,增加了(k3)3,减少了k3,故利用归纳假设,只需将(k3)3展开,证明余下的项9k227k27能被9整除二、填空题9(2015辽宁师大附中高二检测)用数学归纳法证明“12222n12n1(nN)”的过程中,第二步nk时等式成立,则当nk1时应得到_答案12222k12k2k1110用数学归纳法证明当nN时,12222325n1是31的倍数时,当n1时原式为_,从kk1时需增添的项是_答案1222232425k25k125k225k325k411使不等式2nn21对任意nk的自然数都成立的最小k值为_答案5解析2532,52126,对

5、n5的所有自然数n,2nn21都成立,自己用数学归纳法证明之三、解答题12已知f(n)1,nN,求证:nf(1)f(n1)nf(n)(n2且nN)证明(1)当n2时,左边2f(1)3,右边2f(2)3,等式成立(2)假设nk时,kf(1)f(k1)kf(k)当nk1时,k1f(1)f(k1)f(k)1f(k)kf(k)(k1)f(k)1(k1)(f(k)(k1)f(k1)即nk1时,命题成立根据(1)和(2),可知结论正确.一、选择题1用数学归纳法证明“(n1)(n2)(nn)2n13(2n1)(nN)”,则“从k到k1”左端需乘的代数式为()A2k1B2(2k1)C.D答案B解析nk时左式(

6、k1)(k2)(k3)nk1时左式(k2)(k3)(2k1)(2k2)故“从k到k1”左端需乘2(2k1)故选B.2已知数列an,a11,a22,an12anan1(kN*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证()Aa4k1能被4整除Ba4k2能被4整除Ca4k3能被4整除Da4k4能被4整除答案D解析在数列a4n中,相邻两项下标差为4,所以a4k后一项为a4k4.故选D.3(2015锦州期中)在数学归纳法证明多边形内角和定理时,第一步应验证()An1成立Bn2成立Cn3成立Dn4成立答案C解析多边形的边数最少是3,即三角形,第一步验证n等于3.4用数学归纳法证明3

7、kn3(n3,nN),第一步应验证()An1Bn2Cn3Dn4答案C解析n3,nN,第一步应验证n3时,命题成立二、填空题5用数学归纳法证明关于n的恒等式时,当nk时,表达式为1427k(3k1)k(k1)2,则当nk1时,待证表达式应为_答案1427k(3k1)(k1)(3k4)(k1)(k2)26用数学归纳法证明:12222n12n1(nN*)的过程如下:当n1时,左边201,右边2111,不等式成立;假设nk时,等式成立,即12222k12k1.则当nk1时,12222k12k2k11,所以nk1时等式成立由此可知对任意正整数n,等式都成立以上证明错在何处?_.答案没有用上归纳假设解析由

8、数学归纳法证明步骤易知其错误所在7设S112,S2122212,Sn122232n22212.用数学归纳法证明Sn时,第二步从“nk到nk1”右边应添加的项为_答案解析Sk1Sk.三、解答题8在数列an中,a1a21,当nN*时,满足an2an1an,且设bna4n,求证:bn的各项均为3的倍数证明(1)a1a21,故a3a1a22,a4a3a23.b1a43,当n1时,b1能被3整除(2)假设nk时,即bka4k是3的倍数则nk1时,bk1a4(k1)a(4k4)a4k3a4k2a4k2a4k1a4k1a4k3a4k12a4k.由归纳假设,a4k是3的倍数,故可知bk1是3的倍数nk1时命题正确综合(1)、(2)可知,对于任意正整数n,数列bn的各项都是3的倍数9若不等式对一切正整数n都成立,求正整数a的最大值,并证明你的结论解析取n1,令,得a.n1时,结论已证假设nk(kN)时,则当nk1时,有()(),0.,即nk1时,结论也成立由可知,对一切nN,都有.故a的最大值为25.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁