云南省曲靖市宣威民族中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc

上传人:茅**** 文档编号:87837300 上传时间:2023-04-18 格式:DOC 页数:22 大小:2.09MB
返回 下载 相关 举报
云南省曲靖市宣威民族中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第1页
第1页 / 共22页
云南省曲靖市宣威民族中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《云南省曲靖市宣威民族中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省曲靖市宣威民族中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1执行如图所示的程序框图,当输出的时,则输入的的值为( )A-2B-1CD2一个几何体的三视图如图所示,则该几何体的表面积为( )ABCD843在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD4若的展开式中的系数之和为,则实数的值为( )ABCD15已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为 ABCD6将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()ABCD7已知,满足条件(为常数),若目标函数的最大值为9,则( )ABCD8已知复数在复平面内对应的点的坐标为,则下列结论正确的是( )AB复数的共轭复数是CD9将函数图象上各

3、点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )ABCD10已知函数,则( )A1B2C3D411已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则( )ABCD12已知,函数,若函数恰有三个零点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列与均为等差数列(),且,则_14已知均为非负实数,且,则的取值范围为_15的展开式中项的系数为_16已知函数,且,使得,则实数m的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系xOy中,曲线l的参数方

4、程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.18(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.19(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.20(12分)已知函数, (1)当x0时,f(x)h(x)恒成立,求a的取值范围;(2)当x0时,研究函数F(x)=h(x)g(x)的零点

5、个数;(3)求证:(参考数据:ln1.10.0953)21(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.22(10分)如图,已知正方形所在平面与梯形所在平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行循环得结束循环,输出,符合题意;若输入,则执行循环得结束循环,输出,与题意输出的矛盾;若输入,则执行

6、循环得结束循环,输出,与题意输出的矛盾;综上选B.2、B【解析】画出几何体的直观图,计算表面积得到答案.【详解】该几何体的直观图如图所示:故.故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.3、A【解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程为 因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题

7、.4、B【解析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.5、D【解析】由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可【详解】解:如图,点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小, 设正方体的棱长为,则,取,连接,则共面,在中,设到的距离为,设到平面的距离为,.故选D【点睛】本题考查多面

8、体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题6、D【解析】利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案【详解】将将函数的图象向左平移个单位长度,可得函数又由函数为偶函数,所以,解得,因为,当时,故选D【点睛】本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题7、B【解析】由目标函数的最大值为9,我们可以画出满足条件 件为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数

9、的方程组,消参后即可得到的取值【详解】画出,满足的为常数)可行域如下图:由于目标函数的最大值为9,可得直线与直线的交点,使目标函数取得最大值,将,代入得:故选:【点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组,代入另一条直线方程,消去,后,即可求出参数的值8、D【解析】首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】

10、本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.9、D【解析】先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与

11、落实三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解10、C【解析】结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.11、B【解析】根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.12、C【解析】当时,最多一个零

12、点;当时,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得【详解】当时,得;最多一个零点;当时,当,即时,在,上递增,最多一个零点不合题意;当,即时,令得,函数递增,令得,函数递减;函数最多有2个零点;根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,如图:且,解得,故选【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.二、填空题:本题共4小题,每小题5分,共20分。13、20【解析】设等差数列的公差为,由数列为等差数列,且,根据等差中项的性质可得,解方程求出公差,代入等差数列的通项公

13、式即可求解.【详解】设等差数列的公差为,由数列为等差数列知,因为,所以,解得,所以数列的通项公式为,所以.故答案为:【点睛】本题考查等差数列的概念及其通项公式和等差中项;考查运算求解能力;等差中项的运用是求解本题的关键;属于基础题.14、【解析】设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则 ,因为,当且仅当时等号成立,所以 ,即,令则函数的对称轴为,所以当时函数有最大值为,即当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛

14、】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.15、40【解析】根据二项定理展开式,求得r的值,进而求得系数【详解】根据二项定理展开式的通项式得 所以 ,解得 所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题16、【解析】根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【详解】解:依题意,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【点睛】本题考查了分段函数的值域求参数的取值范

15、围,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(2,)【解析】(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)曲线C的极坐标方程为,则,即.(2),联立可得,(舍)或,公共点(,3),化为极坐标(2,)【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.18、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】(1)分类时,恒成立

16、,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解再用导数研究的性质可得【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,设,当时,则在上单调递增,当时,则在上单调递减,所以当时,取得最大值.,所以,要使时,恒成立,的取值范围为.(2)由题意,曲线为:.令,所以,设,则,当时,故在上为增函数,因此在区间上的最小值,所以,当时,所以,曲线在点处的切线与轴垂直等价于方程在上有实数解.而,即方程无实数解.故不存在实数,使曲线在点处的切线与轴垂直.【点睛】本题考查不等式恒成立,考查用导数的几何意义,由导数几何把问题进行转化

17、是解题关键本题属于困难题19、(1)(2)1008【解析】(1)用基本量求出首项和公差,可得通项公式;(2)用裂项相消法求得和,然后解不等式可得【详解】解:(1)由题得,即解得或因为数列为各项均为整数,所以,即(2)令所以即,解得所以的最大值为1008【点睛】本题考查等差数列的通项公式、前项和公式,考查裂项相消法求数列的和在等差数列和等比数列中基本量法是解题的基本方法20、(1);(2)见解析;(3)见解析【解析】(1)令H(x)=h(x)f(x)=ex1aln(x+1)(x0),求得导数,讨论a1和a1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)g(x)的导数和二

18、阶导数,判断F(x)的单调性,讨论a1,a1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex1+ln(x+1)对x0恒成立,令;由(2)知,当a=1时,对x0恒成立,令,结合条件,即可得证【详解】()解:令H(x)=h(x)f(x)=ex1aln(x+1)(x0),则,若a1,则,H(x)0,H(x)在0,+)递增,H(x)H(0)=0,即f(x)h(x)在0,+)恒成立,满足,所以a1; 若a1,H(x)=ex在0,+)递增,H(x)H(0)=1a,且1a0,且x+时,H(x)+,则x0(0,+),使H(x0)=0进而H(x)在0,x0)递减,在(x0,+)递增,所以当x(0

19、,x0)时H(x)H(0)=0,即当x(0,x0)时,f(x)h(x),不满足题意,舍去;综合,知a的取值范围为(,1()解:依题意得,则F(x)=exx2+a,则F(x)=ex2x0在(,0)上恒成立,故F(x)=exx2+a在(,0)递增,所以F(x)F(0)=1+a,且x时,F(x);若1+a0,即a1,则F(x)F(0)=1+a0,故F(x)在(,0)递减,所以F(x)F(0)=0,F(x)在(,0)无零点; 若1+a0,即a1,则使,进而F(x)在递减,在递增,且x时,F(x)在上有一个零点,在无零点,故F(x)在(,0)有一个零点综合,当a1时无零点;当a1时有一个零点()证明:由

20、()知,当a=1时,ex1+ln(x+1)对x0恒成立,令,则即; 由()知,当a=1时,对x0恒成立,令,则,所以;故有【点睛】本题考查导数的运用:求单调区间,考查函数零点存在定理的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个含自变量的函数,注意让含有自变量的函数式子尽量简单一些21、(1)见解析;(2)【解析】(1)设,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.

21、【详解】(1)由已知,所以,设,当时,单调递增,而,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,在单调递增,即,从而,因为函数在上单调递减,在上恒成立,令,在上单调递减,当时,则在上单调递减,符合题意.当时,在上单调递减,所以一定存在,当时,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.22、(1)证明见解析 (2)【解析】(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,所以平面ABMN,因为平面ABMN,平面ABMN,所以, 因为,所以,因为,所以,所以,因为在直角梯形ABMN中,所以, 所以,所以,因为,所以平面 (2)如图,取BM的中点E,则,又BMAN,所以四边形ABEN是平行四边形,所以NEAB,又ABCD,所以NECD,因为平面CDM,平面CDM,所以NE平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等, 设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以, 又,所以由可得,解得,所以点N到平面CDM的距离为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁