《2022-2023学年云南省泸西县第一中学高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年云南省泸西县第一中学高考全国统考预测密卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知向量,若,则( )ABCD2在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD3已知函数在上可导且恒成立,则下列不等
2、式中一定成立的是( )A、B、C、D、4自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有( )A12种B24种C36种D72种5集合,则( )ABCD6设等差数列的前项和为,若,则( )A21B22C11D127若为虚数单位,则复数在复平面上对应的点位于( )A第一象限
3、B第二象限C第三象限D第四象限8若样本的平均数是10,方差为2,则对于样本,下列结论正确的是( )A平均数为20,方差为4B平均数为11,方差为4C平均数为21,方差为8D平均数为20,方差为89若是定义域为的奇函数,且,则A的值域为B为周期函数,且6为其一个周期C的图像关于对称D函数的零点有无穷多个10已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D311已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B12某学校组织学生参加英语测试,成绩的频率分布直方图如
4、图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )A45B50C55D60二、填空题:本题共4小题,每小题5分,共20分。13函数的极大值为_.14已知向量,则_.15若一组样本数据7,9,8,10的平均数为9,则该组样本数据的方差为_.16在中,已知,则A的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列是各项均为正数的等比数列,且,成等差数列()求数列的通项公式;()设,为数列的前项和,记,证明:18(12分)已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆
5、上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.19(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)3
6、0,35)35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率20(12分)如图,四棱锥中,底面,点在线段上,且.(1)求证:平面;(2)若,求二面角的正弦值.21(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)写出直线的普通方程与曲线的直角坐标方程;(2)设直
7、线上的定点在曲线外且其到上的点的最短距离为,试求点的坐标.22(10分)一张边长为的正方形薄铝板(图甲),点,分别在,上,且(单位:).现将该薄铝板沿裁开,再将沿折叠,沿折叠,使,重合,且重合于点,制作成一个无盖的三棱锥形容器(图乙),记该容器的容积为(单位:),(注:薄铝板的厚度忽略不计)(1)若裁开的三角形薄铝板恰好是该容器的盖,求,的值;(2)试确定的值,使得无盖三棱锥容器的容积最大.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】, ,解得:故选:【点
8、睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.2、A【解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题3、A【解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R
9、上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.4、C【解析】先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.5、A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.6、
10、A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.7、D【解析】根据复数的运算,化简得到,再结合复数的表示,即可求解,得到答案【详解】由题意,根据复数的运算,可得,所对应的点为位于第四象限.故选D.【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的
11、关键,着重考查了推理与运算能力,属于基础题8、D【解析】由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.9、D【解析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可.【详解】是定义域为的奇函数,则,又,即是以4为周期的函数,所以函数的零点有无穷多个;因为,令,则,即,所以的图象关于对称,由题意无法求出的值域,所以本题答案为D.【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.10、C【解析】若对任意
12、的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,又三角形有一个内角为,所以,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.11、C【解析】试题分析:集合 考点:集合间的关系12、D【解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应
13、用问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求函的定义域,再对函数进行求导,再解不等式得单调区间,进而求得极值点,即可求出函数的极大值【详解】函数,令得,当时,函数单调递增;当时,函数单调递减,当时,函数取到极大值,极大值为.故答案为:【点睛】本题考查利用导数研究函数的极值,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意定义域优先法则的应用14、3【解析】由题意得,再代入中,计算即可得答案.【详解】由题意可得,解得,.故答案为:.【点睛】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的
14、运用.15、1【解析】根据题意,由平均数公式可得,解得的值,进而由方差公式计算,可得答案【详解】根据题意,数据7,9,8,10的平均数为9,则,解得:,则其方差.故答案为:1【点睛】本题考平均数、方差的计算,考查运算求解能力,求解时注意求出的值,属于基础题16、【解析】根据正弦定理,由可得,由可得,将代入求解即得.【详解】,即,则,则.故答案为:【点睛】本题考查正弦定理和二倍角的正弦公式,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(),;()见解析【解析】()由,且成等差数列,可求得q,从而可得本题答案;()化简求得,然后求得,再用裂项相消法求,即可得到本题
15、答案.【详解】()因为数列是各项均为正数的等比数列,可设公比为q,又成等差数列,所以,即,解得或(舍去),则,;()证明:,则,因为,所以即.【点睛】本题主要考查等差等比数列的综合应用,以及用裂项相消法求和并证明不等式,考查学生的运算求解能力和推理证明能力.18、(1);(2)();()证明见解析.【解析】(1)由,解方程组即可得到答案;(2)()设,则,易得,注意到,利用基本不等式得到的最大值即可得到答案;()设直线斜率为,直线方程为,联立椭圆方程得到的坐标,再利用两点的斜率公式计算即可.【详解】(1)设,由,得.将代入,得,即,由,解得,所以椭圆的标准方程为.(2)设,则,()易知为的中位
16、线,所以,所以,又满足,所以,得,故,当且仅当,即,时取等号,所以面积最大值为.()记直线斜率为,则直线斜率为,所以直线方程为.由,得,由韦达定理得,所以,代入直线方程,得,于是,直线斜率,所以直线与斜率之积为定值.【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆中的最值及定值问题,在解椭圆与直线的位置关系的答题时,一般会用到根与系数的关系,考查学生的数学运算求解能力,是一道有一定难度的题.19、(1)(2)【解析】(1)由前三年六月份各天的最高气温数据,求出最高气温位于区间20,25)和最高气温低于20的天数,由此能求出六月份这种酸奶一天的需求量不超过300瓶的概率(2)当温度大于等于25时
17、,需求量为500,求出Y900元;当温度在20,25)时,需求量为300,求出Y300元;当温度低于20时,需求量为200,求出Y100元,从而当温度大于等于20时,Y0,由此能估计估计Y大于零的概率【详解】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间20,25)和最高气温低于20的天数为2+16+3654,根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,六月份这种酸奶一天的需求量不超过300瓶的概率p(2)当温度大于等于25时,需求
18、量为500,Y4502900元,当温度在20,25)时,需求量为300,Y3002(450300)2300元,当温度低于20时,需求量为200,Y400(450200)2100元,当温度大于等于20时,Y0,由前三年六月份各天的最高气温数据,得当温度大于等于20的天数有:90(2+16)72,估计Y大于零的概率P【点睛】本题考查概率的求法,考查利润的所有可能取值的求法,考查函数、古典概型等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题20、(1)证明见解析(2)【解析】(1)要证明平面,只需证明,即可求得答案;(2)先根据已知证明四边形为矩形
19、,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,即可求得答案.【详解】(1)平面,平面,.,.又,平面.(2)由(1)可知.在中,.又,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.【点睛】本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.21、(1)的普通方程为的直角坐标方程为 (2)(-1,0)或(2,3)【解析】(
20、1)对直线的参数方程消参数即可求得直线的普通方程,对整理并两边乘以,结合,即可求得曲线的直角坐标方程。(2)由(1)得:曲线C是以Q(1,1)为圆心,为半径的圆,设点P的坐标为,由题可得:,利用两点距离公式列方程即可求解。【详解】解:(1)由消去参数,得即直线的普通方程为 因为又,曲线的直角坐标方程为 (2)由知,曲线C是以Q(1,1)为圆心,为半径的圆设点P的坐标为,则点P到上的点的最短距离为|PQ|即,整理得,解得 所以点P的坐标为(-1,0)或(2,3)【点睛】本题主要考查了参数方程化为普通方程及极坐标方程化为直角坐标方程,还考查了转化思想及两点距离公式,考查了方程思想及计算能力,属于中
21、档题。22、(1),;(2)当值为时,无盖三棱锥容器的容积最大.【解析】(1)由已知求得,求得三角形的面积,再由已知得到平面,代入三棱锥体积公式求的值;(2)由题意知,在等腰三角形中,则,写出三角形面积,求其平方导数的最值,则答案可求【详解】解:(1)由题意,为等腰直角三角形,又,恰好是该零件的盖,则,由图甲知,则在图乙中,又,平面,平面,;(2)由题意知,在等腰三角形中,则,令,可得:当时,当,时,当时,有最大值由(1)知,平面,该三棱锥容积的最大值为,且当时,取得最大值,无盖三棱锥容器的容积最大答:当值为时,无盖三棱锥容器的容积最大【点睛】本题考查棱锥体积的求法,考查空间想象能力与思维能力,训练了利用导数求最值,属于中档题