山东省泰安市宁阳县第四中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc

上传人:lil****205 文档编号:88000724 上传时间:2023-04-19 格式:DOC 页数:17 大小:1.71MB
返回 下载 相关 举报
山东省泰安市宁阳县第四中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第1页
第1页 / 共17页
山东省泰安市宁阳县第四中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《山东省泰安市宁阳县第四中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省泰安市宁阳县第四中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元

2、C元D元2在中,点满足,则等于( )A10B9C8D73命题“”的否定是( )ABCD4已知函数满足,设,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为3,且,则抛物线的方程是( )ABCD6某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD7设,其中a,b是实数,则( )A1B2CD8某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD9在复平面内,复数(为虚数

3、单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限10的展开式中各项系数的和为2,则该展开式中常数项为A-40B-20C20D4011定义:表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD12连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线的左右焦点分别关于两渐近线对称点重合,则双曲线的离心率为_14已知数列中,为其前项和,则_,_.15已知均为非负实数,且,则的取值范围为_16已知数列的首项,函数在上有唯一零点,则数列|的前项和_.三、

4、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数当时,求不等式的解集;,求a的取值范围18(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,.(1)求数列与的通项公式;(2)求数列的前n项和.19(12分)如图,底面是等腰梯形,点为的中点,以为边作正方形,且平面平面.(1)证明:平面平面.(2)求二面角的正弦值20(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21(12分)如图,在平面直角坐标系xOy中,已

5、知椭圆C:(ab0)的离心率为且经过点(1,),A,B分别为椭圆C的左、右顶点,过左焦点F的直线l交椭圆C于D,E两点(其中D在x轴上方)(1)求椭圆C的标准方程;(2)若AEF与BDF的面积之比为1:7,求直线l的方程22(10分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟)若用时不超过(分钟),则称这个工人为优秀员工(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望

6、参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查

7、了建模解模的能力,属于基础题.2、D【解析】利用已知条件,表示出向量 ,然后求解向量的数量积【详解】在中,点满足,可得 则=【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量3、D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】本题考查全称命题的否定,难度容易.4、B【解析】结合函数的对应性,利用充分条件和必要条件的定义进行判断即可【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础

8、题5、B【解析】利用抛物线的定义可得,把线段AB中点的横坐标为3,代入可得p值,然后可得出抛物线的方程.【详解】设抛物线的焦点为F,设点,由抛物线的定义可知,线段AB中点的横坐标为3,又,可得,所以抛物线方程为.故选:B.【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.6、A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.7、D【解析】根据复数相等,可得,然后根据复数模的计算,可得结

9、果.【详解】由题可知:,即,所以则故选:D【点睛】本题考查复数模的计算,考验计算,属基础题.8、C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C9、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题10、D【解析】令x=1得a=1.故原式=的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式

10、相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项=-40+80=4011、D【解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.12、D【解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四

11、个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.【点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】双曲线的左右焦点分别关于两条渐近线的对称点重合,可得一条渐近线的斜率为1,即,即可求出双曲线的离心率【详解】解:双曲线的左右焦点分别关

12、于两条渐近线的对称点重合,一条渐近线的斜率为1,即,故答案为:【点睛】本题考查双曲线的离心率,考查学生的计算能力,确定一条渐近线的斜率为1是关键,属于基础题14、8 (写为也得分) 【解析】由,得,.当时,所以,所以的奇数项是以1为首项,以2为公比的等比数列;其偶数项是以2为首项,以2为公比的等比数列.则,.15、【解析】设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则 ,因为,当且仅当时等号成立,所以 ,即,令则函数的对称轴为,所以当时函数有最大值为,即当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的

13、对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.16、【解析】由函数为偶函数,可得唯一零点为,代入可得数列的递推关系式,再进行配凑转换为等比数列,最后运用分部求和可得答案.【详解】因为为偶函数,在上有唯一零点,所以,为首项为2,公比为2的等比数列.所以,.故答案为:【点睛】本题主要考查了函数的奇偶性和函数的零点,同时也考查了由递推关系式求数列的通项,考查了数列的分部求和,属于中档题.三、解答题:共7

14、0分。解答应写出文字说明、证明过程或演算步骤。17、(1); (2).【解析】(1)当时,当时,令,即,解得,当时,显然成立,所以,当时,令,即,解得,综上所述,不等式的解集为(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想18、(1);(2)【解析】(1)设数列的公差为d,由可得,由即可解得,故,由,即可解得,进而求得.(2) 由(1)得,,利用分组求和及错位相减法即可求得结果.【

15、详解】(1)设数列的公差为d,数列的公比为q,由可得,整理得,即,故,由可得,则,即,故.(2)由(1)得,故,所以,数列的前n项和为,设,则,得,综上,数列的前n项和为.【点睛】本题考查求等差等比的通项公式,考试分组求和及错位相减法求数列的和,考查学生的计算能力,难度一般.19、(1)见解析;(2)【解析】(1)先证明四边形是菱形,进而可知,然后可得到平面,即可证明平面平面;(2)记AC,BE的交点为O,再取FG的中点P.以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系,分别求出平面ABF和DBF的法向量,然后由,可求出二面角的余弦值,进而可求

16、出二面角的正弦值.【详解】(1)证明:因为点为的中点,所以,因为,所以,所以四边形是平行四边形,因为,所以平行四边形是菱形,所以,因为平面平面,且平面平面,所以平面.因为平面,所以平面平面.(2)记AC,BE的交点为O,再取FG的中点P.由题意可知AC,BE,OP两两垂直,故以O为坐标原点,以射线OB,OC,OP分别为x轴、y轴、z轴的正半轴建立如图所示的空间直角坐标系.因为底面ABCD是等腰梯形,所以四边形ABCE是菱形,且,所以,则,设平面ABF的法向量为,则,不妨取,则,设平面DBF的法向量为,则,不妨取,则,故.记二面角的大小为,故.【点睛】本题考查了面面垂直的证明,考查了二面角的求法

17、,利用空间向量求平面的法向量是解决空间角问题的常见方法,属于中档题.20、(1)直线普通方程:,曲线直角坐标方程:;(2).【解析】(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【点睛】本题考查极坐标与直角坐标的互化、参数方程与普通方程的互化、直线参数方

18、程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.21、(1)(2)【解析】(1)利用离心率和椭圆经过的点建立方程组,求解即可.(2)把面积之比转化为纵坐标之间的关系,联立方程结合韦达定理可求.【详解】解:(1)设焦距为2c,由题意知:;解得,所以椭圆的方程为.(2)由(1)知:F(1,0),设l:,D(,),E(,),0,;由得:,代入得:,又,故,因此,直线l的方程为【点睛】本题主要考查椭圆方程的求解及椭圆中的面积问题,椭圆方程一般利用待定系数法,建立方程组进行求解,面积问题的合理转化是求解的关键,侧重考查数学运算的核心素养.22、(1)43,47;(2)分布列见解析,.【解析】(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,的分布列如下: 故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁