《云南省绿春县高级中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省绿春县高级中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则2已知a,b是两条不同的直线,是
2、两个不同的平面,且,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知是等差数列的前项和,则( )A85BC35D4如图所示,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )ABCD5函数且的图象是( )ABCD6已知函数,其中表示不超过的最大正整数,则下列结论正确的是( )A的值域是B是奇函数C是周期函数D是增函数7已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )ABCD8如图所示,网络纸上小正方形的边长为1
3、,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A2BC6D89已知集合,若,则实数的取值范围为( )ABCD10若函数有两个极值点,则实数的取值范围是( )ABCD11 “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作孙子算经卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )A56383B57171C59189D6124212一艘海轮从A处出发,以每小时2
4、4海里的速度沿南偏东40的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70,在B处观察灯塔,其方向是北偏东65,那么B,C两点间的距离是( )A6 海里B6海里C8海里D8海里二、填空题:本题共4小题,每小题5分,共20分。13设全集,则_.14已知一个四面体的每个顶点都在表面积为的球的表面上,且,则_15若函数,则使得不等式成立的的取值范围为_.16函数在内有两个零点,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.18(12分)已
5、知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.19(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.20(12分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,若,求的最小值.21(12分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)22(10分)在平面直角坐标系xOy中,曲线的参数方程为(为参数)以平面直角坐
6、标系的原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为(1)求曲线的极坐标方程;(2)设和交点的交点为,求 的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.2、C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.3、B【解析】将已知条
7、件转化为的形式,求得,由此求得.【详解】设公差为,则,所以,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.4、D【解析】因为蛋巢的底面是边长为的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为,又因为鸡蛋的体积为,所以球的半径为,所以球心到截面的距离,而截面到球体最低点距离为,而蛋巢的高度为,故球体到蛋巢底面的最短距离为.点睛:本题主要考查折叠问题,考查球体有关的知识.在解答过程中,如果遇到球体或者圆锥等几何体的内接或外接几何体的问题时,可以采用轴截面的方法来处理.也就是画出题目通过球心和最低点的截面,然后利用弦长和勾股定理来解决.球的表面
8、积公式和体积公式是需要熟记的.5、B【解析】先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【详解】由题可知定义域为,是偶函数,关于轴对称,排除C,D.又,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.6、C【解析】根据表示不超过的最大正整数,可构建函数图象,即可分别判断值域、奇偶性、周期性、单调性,进而下结论.【详解】由表示不超过的最大正整数,其函数图象为选项A,函数,故错误;选项B,函数为非奇非偶函数,故错误;选项C,函数是以1为周期的周期函数,故正确;选项D,函数在区间上是增函数,但在整个定义域范围上不具备
9、单调性,故错误.故选:C【点睛】本题考查对题干的理解,属于函数新定义问题,可作出图象分析性质,属于较难题.7、A【解析】首先根据为上的减函数,列出不等式组,求得,所以当最小时,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,函数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中
10、档题目.8、A【解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.9、A【解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查
11、了函数的定义域,考查了数学运算能力.10、A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f(x)求方程f(x)0的根列表检验f(x)在f(x)0的根的附近两侧的符号下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f(x0)0,且在该点左、右两侧的导数值符号相反.11、C【解析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前
12、项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则 令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。12、A【解析】先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:BAC704030.ACD110,ACB1106545,ABC1803045105.又AB240.512.在ABC中,由正弦定理得,即,.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.二、填空题:本题共4小题,每小题5
13、分,共20分。13、【解析】先求出集合,然后根据交集、补集的定义求解即可【详解】解:,或;故答案为:【点睛】本题主要考查集合的交集、补集运算,属于基础题14、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15、【解析】分,两
14、种情况代入讨论即可求解.【详解】,当时,符合;当时,不满足.故答案为:【点睛】本题主要考查了分段函数的计算,考查了分类讨论的思想.16、【解析】设,设,函数为奇函数,函数单调递增,画出简图,如图所示,根据,解得答案.【详解】,设,则.原函数等价于函数,即有两个解.设,则,函数为奇函数.,函数单调递增,.当时,易知不成立;当时,根据对称性,考虑时的情况,画出简图,如图所示,根据图像知:故,即,根据对称性知:.故答案为:.【点睛】本题考查了函数零点问题,意在考查学生的转化能力和计算能力,画出图像是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时, 无极值;
15、当时, 极小值为;(2).【解析】(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题, 当时,函数在上单调递增,此时函数无极值; 当时,令,得,令,得所以函数在上单调递增,在上单调递减. 此时函数有极小值,且极小值为. 综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且, 令所以,因为,从而,所以,在上单调递增. 又若,则所以在上单调递增,从而,所以时满足题意. 若,所以,在中,令,由(1)的单调性可知,有最小值,从而. 所以 所以,由零点存在性定理:,使且在上单调递减,在上单调递增
16、. 所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.18、(1);(2)证明见解析.【解析】(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,所以. (2)由为方程的两个实根,得,两式相减,可得, 因
17、此,令,由,得, 则,构造函数.则,所以函数在上单调递增,故,即, 可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.19、(1)(2)【解析】(1)由公式可化极坐标方程为直角坐标方程;(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解【详解】解:(1),则,所以曲线的直角坐标方程为,即(2)点的直角坐标为,易知.设对应参数分别为将与联立得【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几
18、何意义求直线上两点间距离问题20、(1)增区间为,减区间为; 极小值,无极大值;(2)【解析】(1)求出f(x)的导数,解不等式,即可得到函数的单调区间,进而得到函数的极值;(2)由题意可得,求出的表达式,求出h(t)的最小值即可【详解】(1)将代入中,得到,求导,得到,结合,当得到: 增区间为,当,得减区间为且在时有极小值,无极大值.(2)将解析式代入,得,求导得到,令,得到,,因为,所以设,令,则所以在单调递减,又因为所以,所以 或又因为,所以 所以,所以的最小值为.【点睛】本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数的极值的意义,考查转化思想与减元意识,是一道综合题21
19、、(1)在上单调递增,在上单调递减(2)见解析【解析】(1)求出导函数,由确定增区间,由确定减区间;(2)求出含有参数的,再求出,由的两根是,得,计算,代入后可得结论【详解】解:,函数的定义域为,(1)当时,由得,由得,故函数在上单调递增,在上单调递减(2)证明:由条件可得,方程的两根分别为,且,可得【点睛】本题考查用导数研究函数的单调性,考查导数的运算、方程根的知识在可导函数中一般由确定增区间,由确定减区间22、(1);(2)【解析】(1)先将曲线的参数方程化为普通方程,再将普通方程化为极坐标方程即可.(2)将和的极坐标方程联立,求得两个曲线交点的极坐标,即可由极坐标的含义求得的面积.【详解】(1)曲线的参数方程为(为参数),消去参数的的直角坐标方程为所以的极坐标方程为 (2)解方程组,得到所以,则或()当()时,当()时,所以和的交点极坐标为: ,. 所以故的面积为【点睛】本题考查了参数方程与普通方程的转化,直角坐标方程与极坐标的转化,利用极坐标求三角形面积,属于中档题.