《云南省双江县第一中学2023届高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《云南省双江县第一中学2023届高考全国统考预测密卷数学试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1对于函数,定义满足的实数为的不动点,设,其中且,若有且仅有一个不动点,则的取值范围是( )A或BC或D2已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD3不等式的解集记为,有下面四个命题:;.
2、其中的真命题是( )ABCD4设集合A=4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个5已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )ABCD6已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD7中国古典乐器一般按“八音”分类这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于周礼春官大师,分为“金、石、土、革、丝、木、匏(po)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”
3、为吹奏乐器,“丝”为弹拨乐器现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( )ABCD8已知复数z满足iz2+i,则z的共轭复数是()A12iB1+2iC12iD1+2i9已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,则( )ABC6D10已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )ABCD11函数f(x)的图象大致为()ABCD12设为锐角,若,则的值为( )AB C D二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和为,且满足,则数列的前10项的和为_.14如图,在ABC中,E为边AC上一
4、点,且,P为BE上一点,且满足,则的最小值为_15在的二项展开式中,所有项的二项式系数之和为256,则_,项的系数等于_.16若函数的图像与直线的三个相邻交点的横坐标分别是,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在,这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,_,是否存在正整数,使得成立?18(12分)每年3月20日是国际幸福日,某电视台随机调查某一社区人们的幸福度现从该社区群中随机抽取18名,用“10分制”记录了他们的幸福度指数,结果见如图所示茎叶图,其中以
5、小数点前的一位数字为茎,小数点后的一位数字为叶若幸福度不低于8.5分,则称该人的幸福度为“很幸福”()求从这18人中随机选取3人,至少有1人是“很幸福”的概率;()以这18人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“很幸福”的人数,求的分布列及19(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.20(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将
6、所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替)(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公
7、司将认定该芯片不合格已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率)每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由21(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点求椭圆的标准方程;若时,求实数;试问的值是否与的大小无关,并证明你的结论22(10分)以平面直角坐标系的原点为极点,轴的正半轴
8、为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据不动点的定义,利用换底公式分离参数可得;构造函数,并讨论的单调性与最值,画出函数图象,即可确定的取值范围.【详解】由得,.令,则,令,解得,所以当时,则在内单调递增;当时,则在内单调递减;所以在处取得极大值,即最大值为,则的图象如下图所示:由有且仅有一个不动点,可得得或,解得或.故选:C【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构
9、造函数方法的应用,属于中档题.2、C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图3、A【解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.4、A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算5、D【解析】由题知,又,代入计算可得.【详解】由题知,又.故选:D【点睛】本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.
10、6、B【解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”记事件“恰好不同时包含字母,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题7、B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”
11、共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.8、D【解析】两边同乘-i,化简即可得出答案【详解】iz2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为9、D【解析】先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.10、A【解析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断【详解】图象上相邻两个极值点,满足,即
12、,且,当时,为函数的一个极小值点,而故选:【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用11、D【解析】根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.【详解】因为f(x)f(x)知f(x)的图象不关于y轴对称,排除选项B,C.又f(2)0.排除A,故选D.【点睛】本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.12、D【解析】用诱导公式和二倍角公式计算【详解】故选:D【点睛】本题考查诱导公式、余弦的二倍角公式,解题关键是找出已知角和未知角之间的联系二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由得时,两式作
13、差,可求得数列的通项公式,进一步求出数列的和【详解】解:数列的前项和为,且满足,当时,-得:,整理得:(常数),故数列是以为首项,2为公比的等比数列,所以(首项不符合通项),故,所以:,故答案为:1【点睛】本题主要考查数列的通项公式的求法及应用,数列的前项和的公式,属于基础题14、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是考点:向量的运算,基本不等式【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题
14、,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案15、8 1 【解析】根据二项式系数和的性质可得n,再利用展开式的通项公式求含项的系数即可.【详解】由于所有项的二项式系数之和为,故的二项展开式的通项公式为,令,求得,可得含x项的系数等于,故答案为:8;1【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于中档题16、4【解析】由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可【详解】由题意得函数的最小正周期,解得故答案为:4【点睛】本题考查正弦型函数周期的应用,考查求正弦型函数中的三、解答题:共70分。解答应写出文字说明、证
15、明过程或演算步骤。17、见解析【解析】根据等差数列性质及、,可求得等差数列的通项公式,由即可求得的值;根据等式,变形可得,分别讨论取中的一个,结合等比数列通项公式代入化简,检验是否存在正整数的值即可.【详解】在等差数列中,公差,若存在正整数,使得成立,即成立,设正数等比数列的公比为的公比为,若选,当时,满足成立.若选,方程无正整数解,不存在正整数使得成立.若选,解得或(舍去),当时,满足成立.【点睛】本题考查了等差数列通项公式的求法,等比数列通项公式及前n项和公式的应用,递推公式的简单应用,补充条件后求参数的值,属于中档题.18、 (). ()见解析.【解析】()人中很幸福的有人,可以先计算其
16、逆事件,即人都认为不很幸福的概率,再用减去人都认为不很幸福的概率即可;()根据题意,随机变量,列出分布列,根据公式求出期望即可【详解】()设事件抽出的人至少有人是“很幸福”的,则表示人都认为不很幸福()根据题意,随机变量,的可能的取值为;所以随机变量的分布列为:所以的期望【点睛】本题考查了离散型随机变量的概率分布列,数学期望的求解,概率分布中的二项分布问题,属于常规题型19、(1):,:;(2)【解析】(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详
17、解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得. 设,对应的参数分别为,所以,在的两侧.则.【点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.20、(1)(2)预算经费不够测试完这100颗芯片,理由见解析【解析】(1)先求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【详解】(1)依题意,故又因为所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯
18、片置于一个工程机中进行检测评分达到11万分的概率设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,1500,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片【点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.21、(1)(2)(3)为定值【解析】试题分析:(1)利用待定系数法可得,椭圆方程为;(2)我们要知道=的条件应用,在于直线交椭圆两交点M,N的横坐标为,这样代入椭圆方程,容易得到,从而解得;(3) 需讨论斜率是否存在一方面斜率不存在即=时,由(2)得;另一方面
19、,当斜率存在即时,可设直线的斜率为,得直线MN:,联立直线与椭圆方程,利用韦达定理和焦半径公式,就能得到,所以为定值,与直线的倾斜角的大小无关试题解析:(1),得:,椭圆方程为(2)当时,得:,于是当=时,于是,得到(3)当=时,由(2)知当时,设直线的斜率为,则直线MN:联立椭圆方程有,=+=得综上,为定值,与直线的倾斜角的大小无关考点:(1)待定系数求椭圆方程;(2)椭圆简单的几何性质;(3)直线与圆锥曲线22、【解析】利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【点睛】本题考查极坐标方程与普通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.