宁夏回族自治区石嘴山市第一中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc

上传人:lil****205 文档编号:87996091 上传时间:2023-04-19 格式:DOC 页数:19 大小:1.81MB
返回 下载 相关 举报
宁夏回族自治区石嘴山市第一中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第1页
第1页 / 共19页
宁夏回族自治区石嘴山市第一中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《宁夏回族自治区石嘴山市第一中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《宁夏回族自治区石嘴山市第一中学2022-2023学年高考全国统考预测密卷数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD2九章算术勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为( )ABCD3已知全集,集合,则( )ABCD4设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )ABCD5已知点为双曲线的右焦点,

3、直线与双曲线交于A,B两点,若,则的面积为( )ABCD6相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为( )ABCD7函数 的部分图象如图所示,则 ( )A6B5C4D38已知复数满足,则的值为( )ABCD29刘徽是我国魏晋时期伟大的数学家,他在九章算术中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形为朱方,正方形为青方”,则在五边形内随机取一个点,此点取自

4、朱方的概率为( )ABCD10若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D511定义,已知函数,则函数的最小值为( )ABCD12如图所示,三国时代数学家在周脾算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A20B27C54D64二、填空题:本题共4小题,每小题5分,共20分。13给出以下式子:tan25+tan35tan25tan35;2(sin35cos25+cos35cos65);其中,结果为的式子的

5、序号是_.14在中,则绕所在直线旋转一周所形成的几何体的表面积为_.15函数的值域为_.16若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 18(12分)如图, 在四棱锥中, 底面, , ,点为棱的中点.(1)证明:(2)求直线与平面所成角的正弦值;(3)若为棱上一点, 满足, 求二面角的余弦值.19(

6、12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求20(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,均为正实数,且满足.证明:.21(12分)在极坐标系中,曲线的极坐标方程为,直线的极坐标方程为,设与交于、两点,中点为,的垂直平分线交于、.以为坐标原点,极轴为轴的正半轴建立直角坐标系.(1)求的直角坐标方程与点的直角坐标;(2)求证:.22(10分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.参考答案一、选择题:本题共12

7、小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.2、C【解析】由题意知:,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.3、D【解析】根据函数定义域

8、的求解方法可分别求得集合,由补集和交集定义可求得结果.【详解】,.故选:.【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.4、C【解析】连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,且,解得椭圆的离心率. 故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.5、D【解析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【详解】设双曲

9、线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【点睛】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.6、B【解析】根据循环语句,输入,执行循环语句即可计算出结果.【详解】输入,由题意执行循环结构程序框图,可得:第次循环:,不满足判断条件;第次循环:,不满足判断条件;第次循环:,满足判断条件;输出结果.故选:【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.7、A【解析】根据正切函数的图象求出A、B两点的

10、坐标,再求出向量的坐标,根据向量数量积的坐标运算求出结果【详解】由图象得,令=0,即=k,k=0时解得x=2,令=1,即,解得x=3,A(2,0),B(3,1),.故选:A.【点睛】本题考查正切函数的图象,平面向量数量积的运算,属于综合题,但是难度不大,解题关键是利用图象与正切函数图象求出坐标,再根据向量数量积的坐标运算可得结果,属于简单题.8、C【解析】由复数的除法运算整理已知求得复数z,进而求得其模.【详解】因为,所以故选:C【点睛】本题考查复数的除法运算与求复数的模,属于基础题.9、C【解析】首先明确这是一个几何概型面积类型,然后求得总事件的面积和所研究事件的面积,代入概率公式求解.【详

11、解】因为正方形为朱方,其面积为9,五边形的面积为,所以此点取自朱方的概率为.故选:C【点睛】本题主要考查了几何概型的概率求法,还考查了数形结合的思想和运算求解的能力,属于基础题.10、D【解析】根据复数的四则运算法则先求出复数z,再计算它的模长【详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故选D【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题11、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成

12、立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.12、B【解析】设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知分别结合和差角的正切及正弦余弦公式进行化简即可求解.【详解】tan60tan(25+35),tan25+tan3

13、5tan25tan35;tan25tan35,2(sin35cos25+cos35cos65)2(sin35cos25+cos35sin25),2sin60;tan(45+15)tan60;故答案为:【点睛】本题主要考查了两角和与差的三角公式在三角化简求值中的应用,属于中档试题.14、【解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于基础题.15、【解析】利用配方法化简式子,可得,然后

14、根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为 故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。16、【解析】把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案【详解】,则,的共轭复数在复平面内对应点的坐标为,故答案为【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】(1)首先利用对圆C的参数方程(为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程(2)设,联立直线与圆的极坐标方

15、程,解得;设,联立直线与直线的极坐标方程,解得,可得【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,得;设,则由解得,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.18、(1)证明见解析 (2) (3)【解析】(1)根据题意以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并表示出,由空间向量数量积运算即可证明.(2)先求得平面的法向量,即可求得直线与平面法向量夹角的余弦值,即为直线与平面所成角的正弦值;(3)由点在棱上,设,再由,结合,由空间向量垂直的坐标关系

16、求得的值.即可表示出.求得平面和平面的法向量,由空间向量数量积的运算求得两个平面夹角的余弦值,再根据二面角的平面角为锐角即可确定二面角的余弦值.【详解】(1)证明:底面,以为坐标原点,建立如图所示的空间直角坐标系,点为棱 的中点,.(2),设平面的法向量为.则,代入可得,令解得,即,设直线与平面所成角为,由直线与平面夹角可知 所以直线与平面所成角的正弦值为.(3),由点在棱上,设,故,由,得,解得,即,设平面的法向量为,由,得,令,则取平面的法向量,则二面角的平面角满足,由图可知,二面角为锐二面角,故二面角的余弦值为.【点睛】本题考查了空间向量的综合应用,由空间向量证明线线垂直,求直线与平面夹

17、角及平面与平面形成的二面角大小,计算量较大,属于中档题.19、(1): ;: (2) 【解析】(1)由可得,由,消去参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以20、(1);(2)见解析【解析】(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),的最大值为4.关于的不等式有解等价于,()当时,上述不等式转化为,解得,()当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知,所以,又,当且仅当时,等号

18、成立,即,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.21、(1),;(2)见解析.【解析】(1)将曲线的极坐标方程变形为,再由可将曲线的极坐标方程化为直角坐标方程,将直线的方程与曲线的方程联立,求出点、的坐标,即可得出线段的中点的坐标;(2)求得,写出直线的参数方程,将直线的参数方程与曲线的普通方程联立,利用韦达定理求得的值,进而可得出结论.【详解】(1)曲线的极坐标方程可化为,即,将代入曲线的方程得,所以,曲线的直角坐标方程为.将直线的极坐标方程化为普通方程得,联立,得或,则点、,因此,线段的中点为;(2)由(1)得,易知的垂直平分线的参数方程

19、为(为参数),代入的普通方程得,因此,.【点睛】本题考查曲线的极坐标方程与普通方程之间的转化,同时也考查了直线参数几何意义的应用,涉及韦达定理的应用,考查计算能力,属于中等题.22、 (1);(2)见解析【解析】(1)将转化为对任意恒成立,令,故只需,即可求出的值; (2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,故在上单调递增,又,所以当时,不符合题意;当时,令得,当时,;当时,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,所以,当时,;当时,所以在 单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,所以,使得,当时,;当时,即在上单调递减,在上单调递增,且所以, 即,所以,即【点睛】本题主要考查利用导数法求函数的最值及恒成立问题处理方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁