2022-2023学年山东省招远市第一中学高考全国统考预测密卷数学试卷含解析.doc

上传人:茅**** 文档编号:87796840 上传时间:2023-04-17 格式:DOC 页数:18 大小:1.98MB
返回 下载 相关 举报
2022-2023学年山东省招远市第一中学高考全国统考预测密卷数学试卷含解析.doc_第1页
第1页 / 共18页
2022-2023学年山东省招远市第一中学高考全国统考预测密卷数学试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022-2023学年山东省招远市第一中学高考全国统考预测密卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年山东省招远市第一中学高考全国统考预测密卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

2、1如图,已知平面,、是直线上的两点,、是平面内的两点,且,是平面上的一动点,且直线,与平面所成角相等,则二面角的余弦值的最小值是( )ABCD2定义在上的奇函数满足,若,则( )AB0C1D23定义,已知函数,则函数的最小值为( )ABCD4设,为非零向量,则“存在正数,使得”是“”的( )A既不充分也不必要条件B必要不充分条件C充分必要条件D充分不必要条件5已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是( )A若,且,则B若,且,则C若,且,则D若,且,则6是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7已知正项等比数列满足,若存在两项,使

3、得,则的最小值为( ).A16BC5D48在直角梯形中,点为上一点,且,当的值最大时,( )AB2CD9设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为( )ABCD10设命题:,则为A,B,C,D,11设集合,若,则( )ABCD12某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是( )A各月最高气温平均值与最低气温平均值总体呈正相关B全年中,2月份的最高气温平均值与最低气温平均值的差值最大C全年中各月最低气温平均值不高于10C的月份有5个D从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势二、填空题:

4、本题共4小题,每小题5分,共20分。13已知,为虚数单位,且,则=_.14如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,若,则的取值范围是_15甲、乙、丙、丁四人参加冬季滑雪比赛,有两人获奖.在比赛结果揭晓之前,四人的猜测如下表,其中“”表示猜测某人获奖,“”表示猜测某人未获奖,而“”则表示对某人是否获奖未发表意见.已知四个人中有且只有两个人的猜测是正确的,那么两名获奖者是_.甲获奖乙获奖丙获奖丁获奖甲的猜测乙的猜测丙的猜测丁的猜测16在中, ,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)ABC的内角的对边分别为,已知ABC的面积为(1

5、)求;(2)若求ABC的周长.18(12分)已知函数,若存在实数使成立,求实数的取值范围.19(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.20(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.年龄(单位:岁)保费(单位:元)(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;(2)经调查,年龄在之间的老人每人

6、中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?21(12分)如图,在三棱柱中,是边长为2的菱形,且,是矩形,且平面平面,点在线段上移动(不与重合),是的中点.(1)当四面体的外接球的表面积为时,证明:.平面(2)当四面体的体积最大时,求平面与平面所成锐二面角的余弦值.22(10分)记为数列的前项和,已知,等比数列满足,.(1)求的通项公式;(2)求的前项和.参考答案一、选择题:本题共

7、12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】为所求的二面角的平面角,由得出,求出在内的轨迹,根据轨迹的特点求出的最大值对应的余弦值【详解】,同理为直线与平面所成的角,为直线与平面所成的角,又,在平面内,以为轴,以的中垂线为轴建立平面直角坐标系则,设,整理可得:在内的轨迹为为圆心,以为半径的上半圆平面平面,为二面角的平面角,当与圆相切时,最大,取得最小值此时故选【点睛】本题主要考查了二面角的平面角及其求法,方法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果2、C【解析】首先判断出是周期为的周期函数,

8、由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,所以,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3、A【解析】根据分段函数的定义得,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,则,(当且仅当,即时“”成立.此时,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.4、D【解析】充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案

9、.【详解】充分性:若存在正数,使得,则,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.5、D【解析】利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确故选:【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理. 一般可借助正方体模型,以正方体为主线直观感知并准

10、确判断6、B【解析】分别判断充分性和必要性得到答案.【详解】所以 (逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.7、D【解析】由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.8、B【解析】由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【详解】由题意

11、,直角梯形中,可求得,所以点在线段上, 设 , 则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.9、C【解析】求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.10、D【解析】直接利用全称命题的否定是特称命题写出结果即可.【详解】因为全称命题的否定是特称命题,所以,命题

12、:,则为:,.故本题答案为D.【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.11、A【解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.12、D【解析】根据折线图依次判断每个选项得到答案.【详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10的月份有1月,2月,3月,11月

13、,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【点睛】本题考查了折线图,意在考查学生的理解能力.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】解:利用复数相等,可知由有14、【解析】由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果【详解】设,则,由,得,代入椭圆方程,得,化简得恒成立,由此得,即,故故答案为:【点睛】此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 15、乙、丁【解析】本题

14、首先可根据题意中的“四个人中有且只有两个人的猜测是正确的”将题目分为四种情况,然后对四种情况依次进行分析,观察四人所猜测的结果是否冲突,最后即可得出结果.【详解】从表中可知,若甲猜测正确,则乙,丙,丁猜测错误,与题意不符,故甲猜测错误;若乙猜测正确,则依题意丙猜测无法确定正误,丁猜测错误;若丙猜测正确,则丁猜测错误;综上只有乙,丙猜测不矛盾,依题意乙,丙猜测是正确的,从而得出乙,丁获奖.所以本题答案为乙、丁.【点睛】本题是一个简单的合情推理题,能否根据“四个人中有且只有两个人的猜测是正确的”将题目所给条件分为四种情况并通过推理判断出每一种情况的正误是解决本题的关键,考查推理能力,是简单题.16

15、、【解析】先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)(2) .【解析】试题分析:(1)由三角形面积公式建立等式,再利用正弦定理将边化成角,从而得出的值;(2)由和计算出,从而求出角,根据题设和余弦定理可以求出和的值,从而求出的周长为.试题解析:(1)由题设得,即.由正弦定理得.故.(2)由题设及(1)得,即.所以,故.由题设得,即.由余弦定理得,即,得.故的

16、周长为.点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.18、【解析】试题分析:先将问题“ 存在实数使成立”转化为“求函数的最大值”,再借助柯西不等式求出的最大值即可

17、获解.试题解析:存在实数使成立,等价于的最大值大于,因为,由柯西不等式:,所以,当且仅当时取“”,故常数的取值范围是考点:柯西不等式即运用和转化与化归的数学思想的运用.19、(1);(2).【解析】(1)令,求出的范围,再由指数函数的单调性,即可求出结论;(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.【详解】(1)当时, 令,而是增函数,函数的值域是.(2)当时,则在上单调递减,在上单调递增,所以的最小值为,在上单调递增,最小值为,而的最小值为,所以这种情况不可能.当时,则在上单调递减且没有最小值,在上单调递增最小值为,所以的最小值为,解得

18、(满足题意),所以,解得.所以实数的取值范围是.【点睛】本题考查复合函数的值域与分段函数的最值,熟练掌握二次函数图像和性质是解题的关键,属于中档题.20、(1)30;(2),比较划算.【解析】(1)由频率和为1求出,根据的值求出保费的平均值,然后解一元一次不等式 即可求出结果,最后取近似值即可;(2)分别计算参保与不参保时的期望,比较大小即可.【详解】解:(1)由,解得.保险公司每年收取的保费为:要使公司不亏本,则,即解得.(2)若该老人购买了此项保险,则的取值为(元).若该老人没有购买此项保险,则的取值为.(元).年龄为的该老人购买此项保险比较划算.【点睛】本题考查学生利用相关统计图表知识处

19、理实际问题的能力,掌握频率分布直方图的基本性质,知道数学期望是平均数的另一种数学语言,为容易题.21、(1)证明见解析(2)【解析】(1)由题意,先求得为的中点,再证明平面平面,进而可得结论;(2)由题意,当点位于点时,四面体的体积最大,再建立空间直角坐标系,利用空间向量运算即可.【详解】(1)证明:当四面体的外接球的表面积为时.则其外接球的半径为.因为时边长为2的菱形,是矩形.,且平面平面.则,.则为四面体外接球的直径.所以,即.由题意,所以.因为,所以为的中点.记的中点为,连接,.则,所以平面平面.因为平面,所以平面.(2)由题意,平面,则三棱锥的高不变.当四面体的体积最大时,的面积最大.

20、所以当点位于点时,四面体的体积最大.以点为坐标原点,建立如图所示的空间直角坐标系.则,.所以,.设平面的法向量为.则令,得.设平面的一个法向量为.则令,得.设平面与平面所成锐二面角是,则.所以当四面体的体积最大时,平面与平面所成锐二面角的余弦值为.【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题22、(1)(2)当时,;当时,.【解析】(1)利用数列与的关系,求得;(2)由(1)可得:,算出公比,利用等比数列的前项和公式求出.【详解】(1)当时,当时,因为适合上式,所以.(2)由(1)得,设等比数列的公比为,则,解得,当时,当时,.【点睛】本题主要考查数列与的关系、等比数列的通项公式、前项和公式等基础知识,考查运算求解能力.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁