《最新人教版六年级下册小学数学第五单元数学广角(鸽巢问题)测试题(答案解析)(1).pdf》由会员分享,可在线阅读,更多相关《最新人教版六年级下册小学数学第五单元数学广角(鸽巢问题)测试题(答案解析)(1).pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新人教版六年级下册小学数学第五单元数学广角(鸽巢问题)测试题(答案解析)(1)一、选择题1下面说法错误的是()。若 a 比 b 多 20%,则 6a=5b;100 以内(含 100)的所有偶数的和比奇数的和多1;有一个角是60 的等腰三角形一定是正三角形;10 只鸟要飞回4 个窝里,至少有4 只鸟飞进同一个窝。A.B.C.D.2启航学校的学生中,最大的12 岁,最小的6 岁,最多从中挑选()名学生,就一定能找到年龄相同的两名同学。A.8 B.13 C.73口袋里有红、黄、蓝三种颜色的小球各3 个,一次至少取出()个,才能保证取出的小球一定有3 个球的颜色相同。A.3 B.5 C.7 D.94
2、一个布袋中装有若干只手套,颜色有黑、红、蓝、白4 种,至少要摸出()只手套,才能保证有 3 只颜色相同。A.5 B.8 C.9 D.125把 4 个小球放在3 个口袋里,至少有一个口袋里装了()个小球。A.2 B.3 C.46把 7 本书放进2 个抽屉,总有一个抽屉至少放()本书。A.3 B.4 C.57把红、黄、蓝三种颜色的球各5 个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球A.4 B.5 C.68黑桃和红桃扑克牌各5 张,要想抽出3 张同类的牌,至少要抽出()张A.3 B.5 C.6 D.89把红、黄、蓝、白四种颜色的球各8 个放到一个袋子里,至少要取()个球,才可以保证取
3、到三个颜色相同的球A.9 B.8 C.5 D.1310口袋里放有红、黄、白三种颜色的同样的钮扣各10 枚,至少取出()枚钮扣,才能保证三种颜色的钮扣都取到A.13 B.21 C.3011将 6 个苹果放在3 个盘子里,至少有()个苹果放在同一个盘子里A.2 B.3 C.612清平中心小学98 班有 52 人,彭老师至少要拿()作业本随意发给学生,才能保证至少有有个学生拿到2 本或 2 本以上的本子A.53 本B.52本C.104本二、填空题13有黄、红两种颜色的球各4 个,放到同一个盒子里,至少取_个球可以保证取到 2 个颜色相同的球。14将 9 本书放进5 个抽屉里,总有一个抽屉里至少放了_
4、本书15把 9 本书放进2 个抽屉里,总有一个抽屉至少放进_本书。16盒子里装有同样大小的红球和黄球各5 个,要想摸出的球一定有2 个同色的,至少要摸出 _个球。17 一副扑克牌有四种花色(大、小王除外),每种花色各有13 张,现在从中任意抽牌,至少抽 _张牌,才能保证有5 张牌是同一种花色的。18一个袋子里装有4 个红球,5 个黄球和6 个绿球。若蒙眼去摸,为保证摸出的球中三种颜色都有,则至少要摸出_个球。19从 7 个抽屉中拿出22 个苹果,无论怎样拿,总有一个抽屉中至少拿出了_个苹果。20把红、黄、蓝、白四种颜色的球各8 个放到一个袋子里。至少要取_个球,才可以保证取到两个颜色相同的球。
5、三、解答题21给一个正方体木块的6 个面分别涂上红、黄、蓝3 种颜色。不论怎么涂至少有两个面涂的颜色相同。为什么?22从 13 个连续的自然数中,一定可以找到两个数,它们的差是12 的倍数。任意取多少个连续的自然数,才能保证至少有两个自然数的差是7 的倍数?23 在的方格纸中,每个方格纸内可以填上四个自然数中的任意一个,填满后对每个“田”字形内的四个数字求和,在这些和中,相同的和至少有几个?24 如图,能否在行列的方格表的每一个空格中分别填上,这三个数,使得各行各列及对角线上个数的和互不相同?并说明理由25用数字1,2,3,4,5,6 填满一个的方格表,如右图所示,每个小方格只填其中一个数字,
6、将每个正方格内的四个数字的和称为这个正方格的“标示数”问:能否给出一种填法,使得任意两个“标示数”均不相同?如果能,请举出一例;如果不能,请说明理由26班上有名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【参考答案】*试卷处理标记,请不要删除一、选择题1A 解析:A 【解析】【解答】解:若 a 比 b 多 20%,则 a=b(1+20%)=1.2b,那么 5a=6b;100 以内(含100)的所有偶数的和比奇数的和多50;有一个角是60 的等腰三角形,剩下的两个角也是60,所以一定是正三角形;10 4=22,2+1=3,10 只鸟要飞回4 个窝里,至少
7、有3 只鸟飞进同一个窝。综上,的说法是错误的。故答案为:A。【分析】一个数比另一个数多百分之几,那么这个数=另一个数 (1+百分之几);100-99+98-97+96-95+2-1=(100-99)+(98-97)+(96-95)+(2-1)=50 1=50,所以 100 以内(含100)的所有偶数的和比奇数的和多50;等腰三角形的两个底角相等,若顶角是60,那么其中一个底角是(180-60)2=60,那么这是一个等边三角形;若底角是60,那么顶角是180-60 2=60,那么这是一个等边三角形;10 只鸟要飞回4 个窝里,考虑在最不利的情况,把每个窝放入最多的鸟,即用10 除以4,那么飞进同
8、一个窝里的鸟的只数就是将计算得出的商加1 即可。2A 解析:A 【解析】【解答】7+1=8(名)。故答案为:A。【分析】6、7、8、9、10、11、12,一共 7 个年龄段,在从中挑选1 名学生,就一定能找到年龄相同的两名同学。3C 解析:C 【解析】【解答】解:32+1=7(个)故答案为:C。【分析】假设取出的前6 个球分别是2 个红球,2 个黄球,2 个蓝球,那么再取出1 个无论是什么颜色都能保证取出的小球一定有3 个球的颜色相同。4C 解析:C 【解析】【解答】42+1=8+1=9(只)故答案为:C.【分析】此题主要考查了抽屉原理的应用,考虑最差情况:假设每种颜色的手套先摸出2只,4 种
9、颜色的手套一共摸出:42=8只手套,再摸一只,一定会是4 种颜色中的一种,这样就能保证有3 只颜色相同,据此解答.5A 解析:A 【解析】【解答】43=1(个)1(个),至少:1+1=2(个).故答案为:A.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此列式解答.6B 解析:B 【解析】【解答】解:72=31,3+1=4(本)故答案为:B【分析】假如每个抽屉各放3 本,那么余下的1 本无论放进哪个抽屉都总有一个抽屉至少放 4 本书.7A 解析:A 【解析】【解答】解:3+1=4(个);答:至少取4 个球,可以保证取到两个颜色相同的球
10、故选:A【分析】由于袋子里共有红、黄、蓝三种颜色的球各5 个,如果一次取三个,最差情况为红、黄、蓝三种颜色各一个,所以只要再多取一个球,就能保证取到两个颜色相同的球即 3+1=4 个8B 解析:B 【解析】【解答】解:22+1=5(张)答:至少要抽出5 张故选:B【分析】从最极端情况进行分析:抽出的4 张,两种颜色各有2 张,这时再任取一张,即可保证有抽出3 张同类的牌9A 解析:A 【解析】【解答】解:42+1=9(个);答:从中至少取出9 个球,可以保证取到三个颜色相同的球故选:A【分析】由于袋子里共有红、黄、蓝、白四种颜色的球各8 个,考虑最差情况:前8 个球摸出的是每种颜色各2 个,所
11、以只要再多取一个球,就能保证取到3 个颜色相同的球10B 解析:B 【解析】【解答】解:10+10+1=21(个)答:至少取出21 枚钮扣,才能保证三种颜色的钮扣都取到故选:B【分析】口袋里放有红、黄、白三种颜色的同样的钮扣,最差的情况是头10 个都是同一种颜色的比如红的,此时还剩下黄、白两种颜色的,接着拿了10 个还是同一种颜色的,比如黄的,此时口袋内只剩下白色的了,最后再拿一个,三种颜色的钮扣都取到了,即至少要取出 10+10+1=21 个11A 解析:A 【解析】【解答】解:63=2(个)答:至少有2 个苹果放在同一个盘子里故选:A【分析】将6 个苹果放在3 个盘子里,至少有63=2个苹
12、果放在同一个盘子里,据此解答即可12A 解析:A 【解析】【解答】解:根据题干分析可得:52+1=53(本),答:至少要拿53 本作业本故选:A【分析】把52 个同学看做52 个抽屉,要保证至少有1 个学生拿到2 本或 2 本以上的本子,则作业本的数量应该是比学生数多1,即 52+1=53 本,据此即可解答二、填空题13【解析】【解答】解:有红黄两种颜色的球个4 个放到同一个盒子里至少取 3 个球可以保证取到2 个颜色相同的球故答案为:3【分析】从最坏的情况考虑假设先摸出的两个球一个黄色一个红色那么再摸出一个无论是什么颜色解析:【解析】【解答】解:有红黄两种颜色的球个4 个,放到同一个盒子里,
13、至少取3个球可以保证取到2 个颜色相同的球。故答案为:3。【分析】从最坏的情况考虑,假设先摸出的两个球一个黄色,一个红色,那么再摸出一个无论是什么颜色都能保证取出2 个颜色相同的球。14【解析】【解答】解:95=1 11+1=2(本)故答案为:2【分析】假如每个抽屉各放一本书则剩下的书无论怎么放都至少有一个抽屉放了2 本书解析:【解析】【解答】解:95=11,1+1=2(本)。故答案为:2。【分析】假如每个抽屉各放一本书,则剩下的书无论怎么放都至少有一个抽屉放了2 本书。15【解析】【解答】解:92=4 14+1=5(本)把 9 本数放进 2 个抽屉里总有一个抽屉至少放进5 本书故答案为:5【
14、分析】把a 个物品放进b 个抽屉ab=cn那么每个抽屉里至少放进(c+1)个物品解析:【解析】【解答】解:92=41,4+1=5(本),把9 本数放进2 个抽屉里,总有一个抽屉至少放进5 本书。故答案为:5。【分析】把a 个物品放进b 个抽屉,ab=cn,那么每个抽屉里至少放进(c+1)个物品。16【解析】【解答】解:2+1=3 故答案为:3【分析】从最坏的情况考虑如果前两个球一个红色一个黄色那么再摸出一个无论是什么颜色都能保证一定有2个同色的解析:【解析】【解答】解:2+1=3故答案为:3。【分析】从最坏的情况考虑,如果前两个球一个红色一个黄色,那么再摸出一个无论是什么颜色都能保证一定有2
15、个同色的。17【解析】【解答】44+1=16+1=17(张)故答案为:17【分析】此题主要考查了抽屉原理的应用考虑最差情况:假设每种花色的牌抽出4 张四种花色一共是 44=16 张再抽一张一定会是四种花色中的某一种解析:【解析】【解答】44+1=16+1=17(张)故答案为:17.【分析】此题主要考查了抽屉原理的应用,考虑最差情况:假设每种花色的牌抽出4 张,四种花色一共是44=16张,再抽一张,一定会是四种花色中的某一种,这样就会有5 张牌是同一种花色的,据此解答.18【解析】【解答】6+5+1=11+1=12(个)故答案为:12【分析】此题考查了抽屉原理的应用要考虑最差情况:因为袋子里装有
16、4 个红球 5 个黄球和 6 个绿球假设先摸出 6 个球可能都是绿球再摸5 个球可能都是黄解析:【解析】【解答】6+5+1=11+1=12(个)故答案为:12.【分析】此题考查了抽屉原理的应用,要考虑最差情况:因为袋子里装有4 个红球,5 个黄球和 6 个绿球,假设先摸出6 个球,可能都是绿球,再摸5 个球,可能都是黄球,一共摸了 11 个球,出现了两种颜色,那么再摸一个球,一定会是第三种颜色,据此解答.19【解析】【解答】227=3(个)1(个)至少:3+1=4(个)故答案为:4【分析】抽屉原理的公式:a 个物体放入 n 个抽屉如果 an=bc那么有一个抽屉至少放(b+1)个物体据此解答解析
17、:【解析】【解答】227=3(个)1(个),至少:3+1=4(个).故答案为:4.【分析】抽屉原理的公式:a 个物体放入n 个抽屉,如果an=bc,那么有一个抽屉至少放(b+1)个物体,据此解答.205【解析】【解答】因为是红黄蓝白四种颜色那么抓的前4 个球就有可能分别是这 4 种球只有到第5 个球颜色才能重复故填5【分析】可能性表示的是事情出现的概率前 4 次抓到什么颜色球的可能性都有我们要从中考虑到抓到解析:5【解析】【解答】因为是红、黄、蓝、白四种颜色,那么抓的前4 个球就有可能分别是这4 种球,只有到第5 个球颜色才能重复故填 5【分析】可能性表示的是事情出现的概率,前4 次抓到什么颜
18、色球的可能性都有,我们要从中考虑到抓到不同颜色的最大可能三、解答题21 答:给一个正方体木块的6 个面分别涂上红、黄、蓝3 种颜色,将3 种颜色看成抽屉,根据抽屋原理可知,不管怎么涂至少有两个面涂的颜色相同。【解析】【分析】红、黄、蓝3 种颜色分别涂一个面,剩下的三个面不管涂什么颜色,必定是这三种颜色中的一种,所以不论怎么涂都能保证至少有两个面涂的颜色相同。22 解:自然数除以7 的余数为:0、1、2、3、4、5、6,因此7 就把自然数分成了7类,即:除以7 余 0、1、2、3、4、5、6,因此,可以把它看成是7 个抽屉,至少要有8个数,才能必然有一个抽屉里有两个数,而这两个数除以7 的余数相
19、同,也就是差是7 的倍数,答:根据上述分析,至少任意取8 个连续的自然数,就能保证其中必有两个数,它们的差是 7 的倍数。【解析】【分析】两个自然数的差是7 的倍数,7 的最小倍数还是7,所以至少要有8 个数,最大的数减去最小的数差是7,就能保证至少有两个自然数的差是7 的倍数。23 解:先计算出在的方格中,共有“田”字形:(个),在中任取4 个数(可以重复)的和可以是中之一,共13 种可能,根据抽屉原理:,至少有个“田”字形内的数字和是相同的【解析】【分析】先求出一共有“田”字形的个数,因为用到的是14 这四个数的和,所以在 22 的方格中,4 个数字的和最小是4,最大是16,从 4 到 1
20、6 一共有 13 个数字,相当于 13 个抽屉,然后根据抽屉原理作答即可。24 解:从问题入手:因为问的是和,所以就从和的种类入手。由,组成的和中最小为,最大的为,中共有种结果,而行列加上对角线共有个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求【解析】【分析】因为用到的是这三个数的和,所以8 个数字的和最小是8,最大是24,从 8 到 24 一共有 17 个数字,根据抽屉原理,不能满足要求。25 解:先计算出每个正方格内的四个数字的和最小为4,最大为24,从 4 到 24共有 21 个不同的值,即有21 个“抽屉”;再找出在的方格表最多有:(个)正方格的“标示数”,即有25 个“苹果”,根据抽屉原理,必有两个“标示数”相同【解析】【分析】先求出一共有“标示数”的个数,因为用到的是16 这六个数的和,所以在 22 的方格中,6 个数字的和最小是4,最大是24,从 4 到 24 一共有 21 个数字,相当于 21 个抽屉,然后根据抽屉原理作答即可。26 解:把 50 名小朋友当作 50 个“抽屉”,书作为物品把书放在 50 个抽屉中,要想保证至少有一个抽屉中有两本书,根据抽屉原理,书的数目必须大于50,而大于50 的最小整数为 50+1=51,所以至少要拿51 本书。【解析】【分析】考虑最不利的情况:有一个小朋友能得到两本书,那么在小朋友人数的基础上加 1 即可。