2022年必考点解析北师大版八年级数学下册第一章三角形的证明达标测试试题(含答案解析).docx

上传人:可**** 文档编号:77374530 上传时间:2023-03-14 格式:DOCX 页数:29 大小:643.04KB
返回 下载 相关 举报
2022年必考点解析北师大版八年级数学下册第一章三角形的证明达标测试试题(含答案解析).docx_第1页
第1页 / 共29页
2022年必考点解析北师大版八年级数学下册第一章三角形的证明达标测试试题(含答案解析).docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《2022年必考点解析北师大版八年级数学下册第一章三角形的证明达标测试试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版八年级数学下册第一章三角形的证明达标测试试题(含答案解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第一章三角形的证明达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点E在线段AB上,则的度数为()A20B25C30D402、如图,等腰ABC中,于D,点O是线段AD上

2、一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD3、如图,在等腰中,BD平分,交AC于点D,若cm,则的周长为( )A8cmB10cmC12cmD14cm4、下列各组数中,能作为直角三角形三边长的是( )A1,2,B8,9,10C,D,5、ABC中,A,B,C所对的边分别是a,b,c下列条件中不能说明ABC是直角三角形的是( )Ab2- c2=a2Ba:b:c= 5:12:13CA:B:C = 3:4:5DC =A -B6、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5

3、,12的两个直角三角形全等其中正确的个数有( )A3B2C1D07、下列命题的逆命题是假命题的是()A同旁内角互补,两直线平行B对于有理数a,如果3a0,那么a0C有两个内角互余的三角形是直角三角形D在任何一个直角三角形中,都没有钝角8、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27D309、如图,在ABC中,cm,的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,则的长为( )A4cmB3cmC2cmD1cm10、等腰三角形的顶角是,则这个三角形的一个底角的大小是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分

4、,共计20分)1、一个直角三角形房梁如图所示,其中,垂足为,那么_2、已知ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_3、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值_4、如图,在RtABC中,C90,ACBC,AD平分CAB,如果CD1,那么BD_5、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)三、解答题(5小题,每小题10分,共计50分)1、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:122、在ABC中,B=90,D为BC延长线上一点,

5、点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当BAC=50时,则AED=_;(2)当时,如图2,连接AD,判断AED的形状,并证明;如图3,直线CF与ED交于点F,满足CFD=CAEP为直线CF上一动点当PE-PD的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明3、如图,已知锐角ABC(1)尺规作图:作ABC的高AD(保留作图的痕迹,不要求写出作法);(2)若,AB+BD与DC有什么关系?并说明理由4、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OAOBm,OCn,满足m212m36(n2)20

6、,作BDAC于D,BD交OA于E(1)如图1,求点B、C的坐标;(2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)如图3,在(2)的条件下,当t6时,在坐标平面内是否存在点F,使PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由5、如图所示,校园里有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里(AOB内部)安装一盏路灯,要求灯柱P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P(不写过程,保留作图痕迹)-参考答

7、案-一、单选题1、C【分析】根据全等三角形的性质可证得BC=CE,ACB=DCE即ACD=BCE,根据等腰三角形的性质和三角形的内角和定理求解B=BEC和BCE即可【详解】解:,BC=CE,ACB=DCE,B=BEC,ACD=BCE,ACD=BCE=180275=30,故选:C【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键2、A【分析】利用等边对等角得:APOABO,DCODBO,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,所以BO不一定是ABD的角平分线,可作判断;证明POC60

8、且OPOC,即可证得OPC是等边三角形;证明OPACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDCD,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC+DCP+PBC180,APC+DCP150,APO+DCO30,OPC+OCP120,POC180(OPC+OCP)60,OPOC,OPC是等边三角形,故正确;如

9、图2,在AC上截取AEPA,PAE180BAC60,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APOCPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键3、B【分析】根据角平分线上的点到角的两边距离相等可得DE=AD,利用“HL”证明RtABD和RtEBD全等,根据全等三角形对应边相等可得AB=BE,然后求出DEC的周长=

10、BC,再根据BC=10cm,即可得出答案【详解】解:BD是ABC的平分线,DEBC,A=90,在RtABD和RtEBD中,AB=BE,DEC的周长=DE+CD+CE=AD+CD+CE,=AC+CE,=AB+CE,=BE+CE,=BC,BC=10cm,DEC的周长是10cm故选:B【点睛】本题考查的是角平分线的性质,全等三角形的判定与性质,熟记各性质并求出DEC的周长=BC是解题的关键4、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可【详解】解:A、,能构造直角三角形,故符合题意;B、,不能构造直角三角形,故不符合题意;C、,不能构造直角三角形,故不符合题意;D、,不能构造直角三

11、角形,故不符合题意;故选:A【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键5、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可【详解】A. b2- c2=a2,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;B. a:b:c= 5:12:13,设,则,则,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;C. A:B:C = 3:4:5,设A、B、C分别是,则,则,所以ABC是不直角三角形,故符合题意; D. C =A -B,又A+B+C=180,则A=90,是直角三角形,故不符合题

12、意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断6、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,

13、等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键7、D【分析】先写出每个选项中的逆命题,然后判断真假即可【详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a0,那么a0的逆命题为:对于有理数a,如果a0,则3a0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在

14、于能够熟知相关知识进行求解8、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键9、C【分析】此类题要通过作辅助线来沟通各

15、角之间的关系,首先求出BMA与CNA是等腰三角形,再证明MAN为等边三角形即可【详解】解:连接AM,AN,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,BMAM,CNAN,MABB,CANC,BAC120,ABAC,BC30,BAMCAN60,AMNANM60,AMN是等边三角形,AMANMN,BMMNNC,BC6cm,MN2cm故答案为2cm故选:C【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键10、A【分析】根据等腰三角形的两底角相等,即可求解【详解】解:等腰三角形的顶角是,这个三角形的一个底角的大小是

16、故选:A【点睛】本题主要考查了等腰三角形的性质,熟练掌握等腰三角形的两底角相等是解题的关键二、填空题1、【分析】利用直角三角形中,30角所对的直角边等于斜边的一半,即可求解【详解】解:, , , , , 故答案为:【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形中,30角所对的直角边等于斜边的一半是解题的关键2、【分析】作BMAC于M,交AD于P,根据等腰三角形的性质得到ADBC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BEBM,根据数据线的面积公式即可得到结论【详解】解:作BMAC于M,交AD于P,ABC是等腰三角形,AD是BC边上的中

17、线,ADBC,AD是BC的垂直平分线,点B,C关于AD为对称,BP=CP,根据垂线段最短得出:CP+EP=BP+EP=BEBM,AC=BC=5,SABC=BCAD=ACBM=12,BM=AD=,即EP+CP的最小值为,故答案为:【点睛】本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键3、【分析】连接,交于点,连接,则的最小值为,再由已知求出的长即可【详解】解:连接,交于点,连接,是等边三角形,是边中点,点与点关于对称,的最小值为,是的中点,的面积为,的最小值为,故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用

18、将军饮马河原理是解题的关键4、【分析】过点D作DEAB于E,根据角平分线上的点到角的两边的距离相等可得DECD,再求出BDE是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍解答【详解】解:如图,过点D作DEAB于E,AD平分CAB,C90,DECD1,ACBC,C90,B45,BDE是等腰直角三角形,BDDE故答案为:【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的直角边与斜边的关系5、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如

19、图,由折叠性质得:ECB=ACBDEABDCA=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180ABC=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定ABC是等腰三角形是本题的关键三、解答题1、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,

20、2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键2、(1)80;(2)是等边三角形;(3)【分析】(1)根据垂直平分线性质可知,再结合等腰三角形性质可得,利用平角定义和四边形内角和定理可得,由此求解即可;(2)根据(1)的结论求出即可证明是等边三角形;(3)根据利用对称和三角形两边之差小于第三边,找到当的值最大时的P点位置,再证明对称点与AD两点构成三角形为等边三角形,利用旋转全等模型即可证明,从而可知,再根据30直角三角形

21、性质可知即可得出结论【详解】解:(1)点E为线段AC,CD的垂直平 分线的交点,在中,故答案为:(2)结论:是等边三角形证明:在中,由(1)得:,是等边三角形结论:证明:如解图1,取D点关于直线AF的对称点,连接、;,等号仅P、E、三点在一条直线上成立,如解图2,P、E、三点在一条直线上,由(1)得:,又,又,点D、点是关于直线AF的对称点,是等边三角形,是等边三角形,在和中, ,(SAS),在中,【点睛】本题是三角形综合题,主要考查了等腰三角形、等边三角形的性质和判定,全等三角形性质和判定等知识点,解题关键是利用对称将转化为三角形三边关系找到P的位置,并证明对称点与AD两点构成三角形为等边三

22、角形3、(1)见详解;(2),理由见详解【分析】(1)以点A圆心,适当长为半径画弧,交BC于两点,再以这两点为圆心,大于这两点的距离的一半为半径画弧,交于一点,然后连接即可;(2)在DC上截取DE=BD,连接AE,由题意易得AB=AE,则有B=AEB,进而可得AE=EC,最后问题可求解【详解】解:(1)如图所示,即为所求;(2),理由如下:在DC上截取DE=BD,连接AE,如图所示:,AB=AE,B=AEB,AE=EC=AB,【点睛】本题主要考查等腰三角形的性质与判定及线段垂直平分线的性质定理,熟练掌握等腰三角形的性质与判定及线段垂直平分线的性质定理是解题的关键4、(1)B(6,0),C(2,

23、0);(2)S82t(0t4),S2t8(t4);(3)存在,F(4,4)或F(2,2)【分析】(1)根据平方的非负性,求得,即可求解;(2)根据OACOBE求得,分段讨论,分别求解即可;(3)分两种情况讨论,当在的上方或在的下方,分别求解即可【详解】解:(1),m60,n20m6,n2B(6,0),C(2,0)(2)BDAC,AOBC BDCBDA90,AOBAOC90OACOCA90,OBEOCA90OACOBE OACOBE(AAS)OCOE2当0t4时,BP2t,PC82t,SPCOE(82t)282t;当t4时,BP2t,PC2t8,SPCOE(2t8)22t8;(3)当t6时,BP

24、12OBOP6当F在EP上方时,作FMy轴于M,FNx轴于NFMEFNP90MFNEFP90MFENFPFEFPMENP,FMFNMOON2EM6NPON4F(4,4)当F在EP下方时,作FGy轴于G,FHx轴于HFGEFHP90GFHEFP90GFEHFPFEFPFGFH, GEHPHFOG,FGOH2OG6OHOGOH2F(2,2)【点睛】此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解5、见详解【分析】分别作线段CD的垂直平分线和AOB的角平分线,它们的交点即为点P【详解】解:连结CD,作CD的垂直平分线,和AOB的平分线,两线交于P,如图,点P为所作【点睛】本题考查了作图应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁