《2022年必考点解析北师大版八年级数学下册第一章三角形的证明重点解析试卷(精选).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析北师大版八年级数学下册第一章三角形的证明重点解析试卷(精选).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AB=AC,D是BC的中点,B=35,则BAD=( )A110B70C55D352、如图:
2、将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D183、如图,等腰ABC中,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD4、如图,在ABC中,BAC45,E是AC中点,连接BE,CDBE于点F,CDBE若AD,则BD的长为()A2B2C2D35、如图,RtABC中,C90,利用尺规在BC,BA上分别截取BE,BD,使BEBD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在CBA内交于点F;作射线BF交AC于点G若CG1,P为AB上一动点,则GP的最小值为()A无法确定B
3、C1D26、如图,在ABC中,AD是角平分线,且,若,则的度数是( )A45B50C52D587、已知下列命题中:有两条边分别相等的两个直角三角形全等;有一条腰相等的两个等腰直角三角形全等;有一条边与一个锐角分别相等的两个直角三角形全等;顶角与底边分别对应相等的两个等腰三角形全等其中真命题的个数是()A1B2C3D48、如图,在ABC中,于点D,AB的垂直平分线交AB于点E,交BC于点F,连接AF,则的度数为( )A20B30C35D709、如图,ABC是等边三角形,点在边上,则的度数为( )A25B60C90D10010、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是( )A4
4、、6、8B3、4、5C5、12、13D1、3、第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在ABC中,用无刻度的直尺和圆规在边上找一点D,使为等腰三角形下列作法正确的有_个2、如图,在ABC中,AD为BC边上的中线,于点E,AD与CE交于点F,连接BF.若BF平分,则的面积为_3、如图,在ABC中,平分,交于点,于点,若,则_4、如图,点D是ABC内一点,ADCD,BADBCD,则以下结论:ABAC;DACDCA;BD平分ABC;BD与AC的位置关系是互相垂直其中正确的是:_5、如图,将宽为的纸条沿BC折叠,则折叠后重叠部分的面积为_(根号保留)三、解答题(5小题,
5、每小题10分,共计50分)1、如图,一次函数yx+3的图象与x轴和y轴分别交于点A和点B,将AOB沿直线CD对折,使点A与点B重合,直线CD与x轴交于点C,与AB交于点D(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在x轴上有一点P,且PAB是等腰三角形,不需计算过程,直接写出点P的坐标2、如图,ABC是等腰直角三角形,BAC=90,ACD是等边三角形,E为ABC内一点,AC=CE,BAE=15,AD与CE相交于点F(1)求DFE的度数;(2)求证:AE=BE3、数学课上,王老师布置如下任务:如图,已知MAN45,点B是射线AM上的一个定点,在射线AN上求作点C,使ACB2A
6、下面是小路设计的尺规作图过程作法:作线段AB的垂直平分线l,直线l交射线AN于点D;以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求根据小路设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA ,( )(填推理的依据)AABD,BDCAABD2ABCBD,ACB ,( )(填推理的依据)ACB2A4、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点
7、是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB5、ABC中,ABAC,BD平分ABC交AC于点D,从点A作AEBC交BD的延长线于点E(1)若BAC40,求E的度数;(2)点F是BE上一点,且FEBD取DF的中点H,请问AHBE吗?试说明理由-参考答案-一、单选题1、C【分析】根据等腰三角形三线合一的性质可得ADBC,然后利用直角三角形两锐角互余的性
8、质解答【详解】解:ABAC,D是BC的中点,ADBC,B35,BAD903555故选:C【点睛】本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键2、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO
9、=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=72=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解3、A【分析】利用等边对等角得:APOABO,DCODBO,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,所以BO不一定是ABD的角平分线,可作判断;证明POC60且OPOC,即可证得OPC是等边三角形;证明OPACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDC
10、D,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC+DCP+PBC180,APC+DCP150,APO+DCO30,OPC+OCP120,POC180(OPC+OCP)60,OPOC,OPC是等边三角形,故正确;如图2,在AC上截取AEPA,PAE180BAC60,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APO
11、CPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键4、B【分析】过点C作CNAB于点N,连接ED,EN,利用SAS证明DCEBEN,可得EDNB,CEDENB135,得ADE是等腰直角三角形,可得ADDNBN,进而可得结果【详解】解:如图,过点C作CNAB于点N,连接EN,CNA90,BAC45,NCAA45,ANCN,点E是AC的中点,ANECNE45,CENAEN90
12、,CEF+FEN90,CDBE,CFE90,CEF+FCE90,DCEBEN,在DCE和BEN中,DCEBEN(SAS),EDNB,CEDENB135,AED45AACN,ADDE,AECE,AE=EN,ADDN,ADDNBN,BD2AD2故选B【点睛】本题主要考查了全等三角形的性质与判定,等腰直角三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形求解5、C【分析】如图,过点G作GHAB于H根据角平分线的性质定理证明GHGC1,利用垂线段最短即可解决问题【详解】解:如图,过点G作GHAB于H由作图可知,GB平分ABC,GHBA,GCBC,GHGC1,根据垂线段最短可知,GP的
13、最小值为1,故选:C【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键6、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键7、C【分析】根据全等三角形的判定、等腰三角形和直角三角形的性质逐个排查即可【详解】解:由于SSA不能判定三角形全等,则有两条边分别相等的两个
14、直角三角形不一定全等,故原命题是假命题;由于满足ASA,则有一条腰相等的两个等腰直角三角形全等,故原命题是真命题;有一条边与一个锐角分别相等即可能为ASA或AAS,故原命题是真命题;由于两等腰三角形顶角相等,则他们的底角对应相等,再结合底相等,满足ASA,故原命题是真命题其中真命题的个数是3个故选:C【点睛】本题主要考查了全等三角形的判定、等腰三角形和直角三角形的性质等知识点,灵活应用相关知识成为解答本题的关键8、A【分析】利用等边对等角依次可求得B和BAF的大小,根据等腰三角形三线合一可得BAD的度数,从而可得FAD的度数【详解】解:,AB的垂直平分线交AB于点E,AF=BF,BAF=B=3
15、5,,,故选:A【点睛】本题考查等腰三角形的性质,垂直平分线的性质理解等边对等角和等腰三角形三线合一,并能依此求得相应角的度数是解题关键9、D【分析】由等边三角形的性质及三角形外角定理即可求得结果【详解】是等边三角形C=60ADB=DBC+C=40+60=100故选:D【点睛】本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键10、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形如果没有这种关系,这个就不是直角三角形【详解】解:A、42+6282,不符合勾股定理的逆定理,故本选项符合题意;B、32+42=52,符合勾股定理的逆
16、定理,故本选项不符合题意;C、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D、12+32=,符合勾股定理的逆定理,故本选项符合题意故选:A【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断二、填空题1、3【分析】根据图中的圆心、半径已经角平分线、垂直平分线的作法,依次判断即可得【详解】解:第一个图以C为圆心,AC长为半径,为等腰三角形,符合题意;第二个图为作的角平分线,无法得到为等腰三角形,不符合题意;第三个图以B为圆心,AB长为半径,为等腰三角形,为等边三
17、角形,为等腰三角形,符合题意;第四个图为作线段AC的垂直平分线,可得,为等腰三角形,符合题意;综上可得:有三个图使得为等腰三角形,故答案为:3【点睛】题目主要考查等腰三角形的性质及角平分线、垂直平分线的作法,熟练掌握各个图形的作法是解题关键2、4【分析】过F作FGBC于G,根据角平分线的性质求得FG=EF=2,再根据三角形一边上的中线将三角形面积平分求解即可【详解】解:过F作FGBC于G,BF平分,FGBC,即EFAB,FG=EF=2,AD为ABC的BC边上的中线,FG为BFC的BC边上在中线,又BC=8,SCDF= SBFC= BCFG= 82=4,故答案为:4【点睛】本题考查角平分线的性质
18、定理、三角形的中线性质、三角形的面积公式,熟练掌握角平分线的性质定理以及三角形一边上的中线将三角形面积平分是解答的关键3、8【分析】根据角平分线的性质可得,进而根据即可求得结果【详解】解:在中,平分,又,故答案为:8【点睛】本题考查了角平分线的性质,掌握角平分线的性质是解题的关键4、【分析】由题意知,为等腰三角形,为等腰三角形,可知BD是的平分线,BD与AC互相垂直,进而得到结果【详解】解:ADCDDACDCA故正确;BADBCDBAD+DACBCD+DCA即BACBCAABBC故错误;ABBC,ADDCBD垂直平分AC故正确;BD平分ABC,BD与AC的位置关系是互相垂直故正确;故答案为:【
19、点睛】本题考查了等腰三角形的性质与判定,角平分线,垂直平分线等知识解题的关键在于灵活运用等腰三角形的性质与判定5、【分析】利用折叠的性质可得出ABC是等腰三角形,有AC=AB;过点C作CGAB于点G,则得CG=2,且CGA为等腰直角三角形,从而可求得AC的值,则可求得面积【详解】如图,由折叠性质得:ECB=ACBDEABDCA=CAB=45DCA+ACB+ECB=180CAB+ACB+ABC=180ABC=ACB=67.5AB=AC即ABC是等腰三角形过点C作CGAB于点G,则CG=2,且ACG=CAB=45CGA为等腰直角三角形AG=CG=2 由勾股定理得:重叠部分ABC的面积为故答案为:【
20、点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定ABC是等腰三角形是本题的关键三、解答题1、(1),;(2);(3)或或或【分析】(1)求出当时的值可得点的坐标,求出当时的值可得点的坐标;(2)先根据点的坐标可得的长,再根据折叠的性质可得,设,从而可得的长,然后在中,利用勾股定理即可得;(3)设点的坐标为,根据等腰三角形的定义分,三种情况,再利用两点之间的距离公式建立方程,解方程即可得【详解】解:(1)对应一次函数,当时,解得,即,当时,即,故答案为:,;(2),由折叠的性质得:,设,则,在中,即,解得,即的长度为;(3)设点的坐标为,则,根据等腰三角形的定义,分以下三种情况
21、:当时,是等腰三角形,则,解得,此时点的坐标为或(与点重合,不符题意,舍去);当时,是等腰三角形,则,解得或,此时点的坐标为或;当时,是等腰三角形,则,解得,此时点的坐标为;综上,点的坐标为或或或【点睛】本题考查了一次函数、折叠的性质、等腰三角形的定义等知识点,较难的是题(3),正确分三种情况讨论是解题关键2、(1)DFE=90;(2)见解析【分析】(1)先求得BAD=30,BAE=EAD=15,即可求得EAC=75,由AC=CE,可求得EAC=AEC=75,即可求得DFE=90;(2)在RtAFC中,求得FCA=30,AC=2AF=AB,过点E作EGAB于点G,求得AG=AF,得到BG=AG
22、,即可得到ABF为等腰三角形,即可证明AE=BE【详解】解:(1)ACD是等边三角形,CAD=60,BAC=90,BAD=90-60=30,BAE=15,BAE=EAD=15,EAC=90-15=75,AC=CE,EAC=AEC=75,DFE=EAD+AEC=15+75=90;(2)由(1)得DFE=90,即AFC=AFE=90,ABC是等腰直角三角形,BAC=90,ACD是等边三角形,CAD=60,AB=AC,FCA=30,AC=2AF,即AB=2AF,过点E作EGAB于点G,BAE=EAD=15,且EFA=90,EGAB,EG=EF,又AE= AE,RtEAGRtEAF(HL),AG=AF
23、,AB=2AG,BG=AG,又EGAB,ABF为等腰三角形,AE=BE【点睛】本题考查了等边三角形的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键3、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角【分析】(1)根据题目中的小路的尺规作图过程,直接作图即可(2)根据垂直平分线的性质以及等边对等角进行解答即可【详解】解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示; (2)解:证明:连接BD,BC,直线l为线段AB的垂直平分线,DA DB ,(线段垂直平分线上的点到线段两端
24、的距离相等)(填推理的依据)AABD,BDCAABD2ABCBD,ACBBDC ,(等边对等角)(填推理的依据)ACB2A【点睛】本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键4、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解5、(1)E35;(2)AHBE理由见解析【分析】(1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出CBD的度数,最后根据两直线平行,内错角相等求出;(2)由“SAS”可证ABDAEF,可得AD=AF,由等腰三角形的性质可求解【详解】解:(1)AB=AC,ABC=ACB,BAC=40,ABC=(180-BAC)=70,BD平分ABC,CBD=ABC=35,AEBC,E=CBD=35;(2)BD平分ABC,E=CBD,CBD=ABD=E,AB=AE,在ABD和AEF中,ABDAEF(SAS),AD=AF,点H是DF的中点,AHBE【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键