《高考数学一轮复习第2章函数导数及其应用重点强化训练1函数的图像与性质教师用书文北师大版.doc》由会员分享,可在线阅读,更多相关《高考数学一轮复习第2章函数导数及其应用重点强化训练1函数的图像与性质教师用书文北师大版.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1重点强化训练重点强化训练( (一一) ) 函数的图像与性质函数的图像与性质A 组 基础达标(建议用时:30 分钟)一、选择题1设函数f (x)为偶函数,当x(0,)时,f (x)log2x,则f ()( )2【导学号:66482085】A B 1 21 2C2 D2B B 因为函数f (x)是偶函数,所以f ()f ()log2 .2221 22已知f (x),g(x)分别是定义在 R R 上的偶函数和奇函数,且f (x)g(x)x3x21,则f (1)g(1)( )A3 B1 C1 D3C C 用“x”代替“x” ,得f (x)g(x)(x)3(x)21,化简得f (x)g(x)x3x21
2、,令x1,得f (1)g(1)1,故选 C.3函数f (x)3xx2 的零点所在的一个区间是( )1 2A(2,1) B(1,0)C(0,1) D(1,2)C C 因为函数f (x)在定义域上递增,又f (2)32120,26 9f (1)31 20,1 213 6f (0)300210,f (1)3 2 0,所以f (0)f (1)0,1 23 2所以函数f (x)的零点所在区间是(0,1)4已知函数f (x)是定义在 R R 上的偶函数,且在区间0,)上递增若实数a满足f (log2a)f (loga)2f (1),则a的取值范围是( )1 2A1,2 B(0,1 22C. D(0,21
3、2,2C C f (loga)f (log2a)f (log2a),原不等式可化为f (log2a)f 1 2(1)又f (x)在区间0,)上递增,0log2a1,即 1a2.f (x)是偶函数,f (log2a)f (1)又f (x)在区间(,0上单调递减,1log2a0, a1.综上可知 a2.1 21 25(2017陕西质检(二)若f (x)是定义在(,)上的偶函数,任意x1,x20,)(x1x2),有0,则( )f x2f x1 x2x1【导学号:66482086】Af (3)f (1)f (2) Bf (1)f (2)f (3)Cf (2)f (1)f (3) Df (3)f (2)
4、f (1)D D 由对任意的x1,x20,),0 得函数f (x)为f x2f x1 x2x10,)上的减函数,又因为函数f (x)为偶函数,所以f (3)f (2)f (2)f (1),故选 D.二、填空题6函数yf (x)在x2,2上的图像如图 2 所示,则当x2,2时,f (x)f (x)_.【导学号:66482087】图 20 由题图可知,函数f (x)为奇函数,所以f (x)f (x)0.7若函数ylog2(ax22x1)的值域为 R R,则a的取值范围为_0,1 设f (x)ax22x1,由题意知,f (x)取遍所有的正实数当a0 时,f (x)2x1 符合条件;当a0 时,则Er
5、ror!解得 0a1,所以 0a1.8(2017银川质检)已知yf (x)是定义在 R R 上的奇函数,在(0,)上是增函数,且f (2)0,则满足f (x1)0 的x的取值范围是_.【导学号:66482088】3(,1)(1,3) 依题意当x(1,)时,f (x1)0f (2)的解集为x3,即 1x3;当x(,1)时,f (x1)0f (2)的解集为x1,即x1.综上所述,满足f (x1)0 的x的取值范围是(,1)(1,3)三、解答题9已知函数f (x)2x,当m取何值时方程|f (x)2|m有一个解,两个解?解 令F(x)|f (x)2|2x2|,G(x)m,画出F(x)的图像如图所示.
6、 3分由图像看出,当m0 或m2 时,函数F(x)与G(x)的图像只有一个交点,原方程有一个解;9 分当 0m2 时,函数F(x)与G(x)的图像有两个交点,原方程有两个解. 12 分10函数f (x)mlogax(a0 且a1)的图像过点(8,2)和(1,1)(1)求函数f (x)的解析式;(2)令g(x)2f (x)f (x1),求g(x)的最小值及取得最小值时x的值解 (1)由Error!得Error!3 分解得m1,a2,故函数解析式为f (x)1log2x. 5 分(2)g(x)2f (x)f (x1)2(1log2x)1log2(x1)log21(x1). 7 分x2 x1(x1)
7、2224. x2 x1x122x11 x11 x1x11 x19 分当且仅当x1,即x2 时,等号成立1 x1而函数ylog2x在(0,)上递增,则 log21log2411,x2 x1故当x2 时,函数g(x)取得最小值 1. 12 分B 组 能力提升(建议用时:15 分钟)1(2017东北三省四市二联)已知函数f (x)是定义在 R R 上的奇函数,且在0,)上4是增函数,则不等式f (1)的解集为( )|f ln xf (ln1 x)| 2A. B(0,e)(0,1 e)C. D(e,)(1 e,e)C C f (x)为 R R 上的奇函数,则f f (ln x)f (ln x),所以(
8、ln1 x)|f (ln x)|,即原不等式可化为|f |f ln xf (ln1 x)| 2|f ln xf ln x| 2(ln x)|f (1),所以f (1)f (ln x)f (1),即f (1)f (ln x)f (1)又由已知可得f (x)在 R R 上递增,所以1ln x1,解得 xe,故选 C. 1 e2已知函数f (x),g(x)分别是定义在 R R 上的偶函数与奇函数,且g(x)f (x1),则f (2 019)的值为_0 g(x)f (x1),由f (x),g(x)分别是偶函数与奇函数,得g(x)f (x1),f (x1)f (x1),即f (x2)f (x),f (x
9、4)f (x),故函数f (x)是以 4 为周期的周期函数,则f (2 019)f (50541)f (1)g(0)0.3函数f (x)的定义域为Dx|x0,且满足对于任意x1,x2D,有f (x1x2)f (x1)f (x2)(1)求f (1)的值;(2)判断f (x)的奇偶性并证明你的结论;(3)如果f (4)1,f (x1)2,且f (x)在(0,)上是增函数,求x的取值范围解 (1)对于任意x1,x2D,有f (x1x2)f (x1)f (x2),令x1x21,得f (1)2f (1),f (1)0. 3 分(2)f (x)为偶函数. 4 分证明如下:令x1x21,有f (1)f (1)f (1),f (1)f (1)0.1 2令x11,x2x有f (x)f (1)f (x),5f (x)f (x),f (x)为偶函数. 7 分(3)依题设有f (44)f (4)f (4)2,由(2)知,f (x)是偶函数,f (x1)2f (|x1|)f (16). 9 分又f (x)在(0,)上是增函数,0|x1|16,解得15x17 且x1,11 分x的取值范围是x|15x17 且x1. 12 分