2023年高数大纲.docx

上传人:wj151****6093 文档编号:70239591 上传时间:2023-01-16 格式:DOCX 页数:32 大小:23.47KB
返回 下载 相关 举报
2023年高数大纲.docx_第1页
第1页 / 共32页
2023年高数大纲.docx_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《2023年高数大纲.docx》由会员分享,可在线阅读,更多相关《2023年高数大纲.docx(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高数大纲 第一篇:高数大纲 高等数学、线性代数 高等数学 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简洁应用问题的函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限 : 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1理解函数的概念,驾驭函数的表示法,并会建立简洁应用问题中的

2、函数关系式。 2了解函数的有界性、单调性、周期性和奇偶性 3理解复合函数及分段函数的概念,了解反函数及隐函数的概念 4.驾驭基本初等函数的性质及其图形,了解初等函数的基本概念。5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系 6 驾驭极限的性质及四则运算法则 7 驾驭极限存在的两个准则,并会利用它们求极限,驾驭利用两个重要极限求极限的方法 8 理解无穷小、无穷大的概念,驾驭无穷小的比较方法,会用等价无穷小求极限 9 理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型 10 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、

3、最大值和最小值定理、介值定理,并会应用这些性质 二、一元函数微分学 考试内容。 导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达LHospital法则 函数的极值 函数单调性的判别 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 考试要求 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物

4、理量,理解函数的可导性与连续性之间的关系 2驾驭导数的四则运算法则和复合函数的求导法则,驾驭基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分 3了解高阶导数的概念,会求简洁函数的n阶导数 4.会求分段函数的一阶、二阶导数 5会求隐函数和由参数方程所确定的函数以及反函数的导数 6理解并会用罗尔定理、拉格朗日中值定理.7 理解函数的极值概念,驾驭用导数推断函数的单调性和求函数极值的方法,驾驭函数最大值和最小值的求法及其简洁应用 8会用导数推断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形 9驾驭用洛必达法则求未定式极限的方法 三、一元函

5、数积分学 考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨Newton-Leibniz公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简洁无理函数的积分 广义积分 定积分的应用 考试要求 1理解原函数概念,理解不定积分和定积分的概念 2驾驭不定积分的基本公式,驾驭不定积分和定积分的性质及定积分中值定理,驾驭换元积分法与分部积分法 3会求有理函数、三角函数有理式及简洁无理函数的积分 4理解积分上限的函数,会求它的导数,驾驭牛顿一莱布尼茨公式 5了解广义积分的概念,会计算广

6、义积分 6了解定积分的近似计算法 7驾驭用定积分表达和计算一些几何量与物理量平面图形的面积、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功.四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数、隐函数求导法 二阶偏导数 多元函数的极值、最大值和最小值 二重积分的概念、基本性质和计算 考试要求 1了解多元函数的概念,了解二元函数的几何意义。2了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。3了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导

7、数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。 4了解多元函数极值的概念,驾驭多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会求简洁多元函数的最大值和最小值,会求解一些简洁的应用题。 5了解二重积分的概念与基本性质,驾驭二重积分直角坐标、极坐标的计算方法。 五、常微分方程 考试内容 常微分方程的基本概念 变量可分别的微分方程 齐次微分方程 一阶线性微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简洁的二阶常系数非齐次线性微分方程 微分方程简洁应用 考试要求 1了

8、解微分方程及其解、阶、通解、初始条件和特解等概念 2驾驭变量可分别的方程及一阶线性微分方程的解法,会解齐次微分方程。3会用降阶法解以下方程:y(n)=f(x),y=f(x,y),y=f(y,y) 4理解二阶线性微分方程解的性质及解的结构定理 5驾驭二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 6会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程 7会用微分方程解决一些简洁的应用问题 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行列绽开定理 考试要求 1了解行列式的概念,驾驭行列式的性质 2会应用

9、行列式的性质和行列式按行列绽开定理计算行列式 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 考试要求 1理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、对称矩阵,以及它们的性质 2 驾驭矩阵的线性运算、乘法、转置,以及它们的运算规律,了解方阵的幂与方阵乘积的行列式 3 理解逆矩阵的概念,驾驭逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵 4了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解

10、矩阵的秩的概念,驾驭用初等变换求矩阵的秩和逆矩阵的方法 三、向量 考试内容 向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1理解n维向量的概念、向量的线性组合与线性表示的概念 2理解向量组线性相关、线性无关的概念,驾驭向量组线性相关、线性无关的有关性质及判别法 3了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩 4了解向量组等价的概念,了解矩阵的秩与其行列向量组的秩的关系 四、线性方程组 考试内容 线性方程组的克莱姆(又译:克拉默)Cramer法则 齐次线性

11、方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 考试要求 l会用克莱姆法则 2理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件 3理解齐次线性方程组的基础解系、通解及解空间的概念,驾驭齐次线性方程组的基础解系和通解的求法。 4理解非齐次线性方程组解的结构及通解的概念 5会用初等行变换求解线性方程组 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念及性质 相像变换、相像矩阵的概念及性质 矩阵可相像对角化的充分必要条件及相像对角矩阵 实对称矩阵的特征

12、值、特征向量及相像对角矩阵 考试要求 1理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量 2了解相像矩阵的概念、性质及矩阵可相像对角化的充分必要条件,会将矩阵转化为相像对角矩阵。 3了解实对称矩阵的特征值和特征向量的性质 试卷结构 一题分及考试时间 试卷总分为150分,考试时间为180分钟。 二内容比例 高等教学 约80 线性代数 约20% 三题型比例 填空题与选择题 约40 解答题包括证明题约60%。 参考书: 线性代数化学工业出版社 刘慧主编 高等数学第五版 高等教化出版社 同济高校数学教研室 其次篇:高数大纲 重庆交通高校、重庆邮电高校 2023级高等数学下联考考试大纲

13、 考试时间统一: 第十八周的星期五即2023年6月22日上午10:1012:10。 二、考试题型与分数分布:主观:客观4:6 1单项选择题4分5个20分、2填空题4分5个20分、3计算题10分4个40分、4证明题10分1个10分、5应用题10分1个10分等五类。 三、考试重点与分数分布总分100分: 1第八章大约占8分; 2第九章大约占42分重点;3第十章大约占14分; 4第十一章大约占18分;5第十二章大约占18分。 四、考试内容重点问题与方法: 1.第八章:向量的运算数量积、向量积、空间直线与空间平面的方程 2.第九章:二元函数的极限与连续,多元函数的偏导数和全微分,多元复合函数的一阶、二

14、阶偏导数,由方程确定的隐函数的一阶、二阶偏导数,空间曲线的切线和法平面、曲面的切平面和法线,多元函数的极值和条件极值,多元函数的最值。 3.第十章:二重积分与三重积分概念、性质、计算,重积分在几何与物理上应用曲面面积、质心坐标,转动惯量。 4.第十一章 两类曲线积分的性质及计算,格林Green公式,平面曲线积分与路径无关的条件,二元函数全微分的原函数,两类曲面积分的性质及计算 高斯Gauss公式.5.第十二章:常数项级数的收敛与发散的概念,级数的基本性质与收敛的必要条件,几何级数与级数及其收敛性.正项级数审敛法,莱布尼茨定理,确定收敛与条件收敛,幂级数的收敛半径、收敛区间指开区间和收敛域的求法

15、,幂级数的和函数,幂级数在其收敛区间内的基本性质,简洁幂级数的和函数的求法 初等函数的幂级数绽开式,傅里叶Fourier系数与傅里叶级数 狄利克雷Dirichlet定理。 五、考试目的、要求与留意事项:略 第三篇:高数考试大纲 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 高数考试大纲 江西师范高校2023年“专升本理工类考生 高等数学统考课程考试大纲 第一部分:函数、极限和连续 一、函数 一考试范围 1、函数的概念 函数的定义;函数的定义域;函数的表示方法;分段函数;陷函数。 2、函数的简洁性质 函数的单调性;奇偶性;有界性和周期性。 3、反函数 反函数的定义,反函数的图

16、像;反函数的基本性质。 4、函数的四则运算与复合函数 5、基本初等函数 6、初等函数 二考试要求 1、理解函数的概念;会求函数的定义域、表达式及函数值;会求分段函数的定义域、函数值;并会作简洁分段函数的图像。 2、理解函数的单调性;奇偶性;有界性和周期性。 3、了解函数y=f(x)与其反函数y=f-1(x)之间的关系定义域、值域、细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 图像,会求单调函数的反函数,会求分段函数的反函数。 4、理解复合函数的复合关系。 5、驾驭基本初等函数的简洁性质及其图像。 6、了解初等函数的概念。 7、会建

17、立简洁实际问题的函数关系式。 二、极限 一考试范围 1、数列极限的概念 数列;数列极限定义。 2、数列极限的性质 惟一性;有界性;四则运算法则;夹逼定理;单调有界数列极限存在定理。 3、函数极限的概念 函数在一点XO处极限的定义,左、右极限与函数在一点极限的关系,x,x-,x+时函数的极限,函数极限的几何意义。 4、函数极限的性质 惟一性定理;夹逼定理;极限的四则运算法则。 5、无穷小量和无穷大量 无穷小量与无穷大量的定义;无穷小量与无穷大量的关系;无穷小量的性质;两个无穷小量阶的比较。 lim 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会

18、 策划方案 X0 sinx X lim X0 1 X 6、两个重要极限 =1和 (1+)x = 二考试要求 1、了解极限的概念对极限定义中“-N,“-,“-M的描述不作要求,能根据极限概念分析函数的转变趋势。驾驭函数在一点处的左极限与右极限,理解函数在一点处极限存在的充分必要条件。 2、了解极限的有关性质;驾驭极限的四则运算法则。 3、理解无穷小量、无穷大量的概念;驾驭无穷小量的性质,驾驭无穷小量与无穷大量的关系;会进行无穷小量阶的比较高阶、低阶、同阶和等阶;会用等阶无穷小求极限。 4、娴熟驾驭用两个重要极限求一些函数的极限。 三、连续 一考试范围 1、函数连续的概念 函数在一点连续的定义;左

19、连续与右连续;函数在一点连续的充分必 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 要条件; 函数的间断点及其分类。 2、函数在一点处连续的性质 连续函数的四则运算;复合函数的连续性。 3、闭区间上连续函数的性质 有界性定理;最大值与最小值定理;介值定理包括零点定理。 4、初等函数的连续性 二考试要求 1、理解函数在一点连续与间断概念,驾驭推断函数含分段函数在一点处连续的方法,理解函数在一点连续与极限存在的关系。 2、会求函数的间断点及确定其类型。 3、了解闭区间上连续函数的性质。会用这些性质证明某些命题。 4、理解初等函数在其定

20、义区间上的连续性,并会利用函数的连续性求极限。 其次部分:一元函数微分学 一、导数与微分 一考试范围 1、导数概念 导数的定义;左导数与右导数;导数的几何意义;可导在连续的关系。 2、异数的四则运算法则与异数的基本公式,复合函数求导法则。 3、求导方法 复合函数求导法;隐函数求导法;对数求导法;用参数方程给出函数 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 的求导法。 4、高阶导数的概念 高阶导数的定义;二级导数的计算;简洁函数的n阶导数。 5、微分 微分的定义;微分与导数的关系;微分法则;一阶微分形式的不变性。 二考试要求 1

21、、理解导数的概念及其几何意义;了解可导性与连续性的关系;会用定义求函数在一点处的导数。 2、会求曲线上一点处的切线方程与法线方程。 3、娴熟驾驭导数的基本公式、四则运算法则及复合函数的求导方法。 4、驾驭隐函数求导法与对数求导法,会求分段函数的导数。 5、了解高阶导数的概念,会求函数的二阶导数,会求简洁函数的n阶导数。 6、理解函数的微分概念,驾驭微分法则,了解可微与可导的关系,会求函数的一阶微分。 二、微分中值定理及导数的应用 一考试范围 1、微分中值定理 罗尔Rolle中值定理;拉格朗日Lagrange中值定理;柯西中值定理 2、洛必达Lhospital法则 3、函数增减性的判定法 细心收

22、集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 4、函数的极值与极值点;最大值与最小值 5、曲线的凹凸性、拐点;曲线的渐近线 二考试要求 1、了解罗尔中值定理,拉格朗日中值定理和柯西中植定理知道它们的条件和结论。 2、娴熟驾驭用洛必达法则求“0/0,“/,“0?,“-,“1,“00,“0型未定式的极限的方法。 3、驾驭利用导数判别定函数的单调性及求函数的单调增、减区间的方法;会利用函数的单调性证明简洁的不等式。 4、理解函数极值的概念,驾驭求函数极值和函数的最大、最小值的方法,并会角简洁的应用问题。 5、会判定曲线的凹凸性;会求曲线的凹凸

23、区间和拐点;会求曲线的水平与铅直渐近线、斜渐近线,会用导数作简洁函数图形。第三部分:一元函数积分学 一、不定积分 一考试范围 1、不定积分的概念 原函数的定义;不定积分的定义;不定积分的基本性质。 2、基本积分方式 3、换元法 凑微分法;作代换法。 4、分部积分法 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 5、简洁有理函数的积分;简洁三角函数有理式的积分。 二考试要求 1、理解原函数概念不定积分概念及其关系;驾驭不定积分的基本性质。 2、娴熟驾驭不定积分的基本积分方式。 3、娴熟驾驭凑微分积分法和作代换法限于三角代换与简洁的根

24、式代换。 4、娴熟驾驭不定积分的分部积分法。 5、驾驭简洁有理函数积分与简洁三角函数有理式的积分。 二、定积分 一考试范围 1、定积分的概念 2、定积分的定义及其几何意义;可积条件。 3、定积分的性质 4、定积分的计算 变上限的定积分;定积分的牛顿莱布尼茨公式;换元积分法;分部积分法。 5、无穷区间上的广义积分 6、定积分的应用 平面图形的面积;旋转体体积;用定积分求功,水压力与平面薄板的重心;函数的平均值。 二考试要求 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 1、理解定积分的概念及其几何意义;了解函数的可积条件。 2、驾驭

25、定积分的基本性质。 3、理解变上限的定积分是变上限的函数,驾驭对变上限函数求导的方法。 4、驾驭牛顿莱布尼茨公式。 5、娴熟驾驭定积分的换元法与分部积分法。 6、驾驭无穷区间上广义积分的计算。 7、驾驭直角坐标系下平面图形的面积和平面图形绕坐标轴旋转所得旋转体的体积;会用微元法求功和水压力;会求平面薄板的重心;会求函数在区间a,b上的平均值。第四部分:多元函数微积分 一考试范围 1、多元函数 多元函数的定义;二元函数的定义域;二元函数的几何意义及无条件极值。 2、偏导数与全微分 一阶偏导数;全微分;二阶偏导数 3、复合函数的偏导数;由方程Fx,y,z=0确定的二元隐函数z=fx,y的偏导数。

26、4、二重积分 二重积分的概念;二重积分的性质;直角坐标下的二重积分的计算;极坐标下二重积分的计算。二重积分的几何应用。 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 二考试要求 1、了解多元函数的概念;求二元函数的定义域;了解二元函数的几何意义。 2、理解二元函数一阶偏导数和全微分的概念,驾驭二元函数的一阶偏导数的求法;驾驭二阶偏导数及二元函数全微分的求法。 3、驾驭复合函数偏导数与隐函数偏导数的求法。 4、理解二重主动的概念;驾驭二重积分的性质;娴熟驾驭直角坐标系下二重积分的计算方法及在极坐标下二重积分的计算方法;会用二重积分求

27、几何体的体积。第五部分:无穷级数 一考试范围 1、常数项级数 常数项级数的定义;常数项级数收敛与发散的概念;正项级数敛散性判别方法;随便项级数的确定收敛与条件收敛。 2、函数项级数 函数项级数的收敛域;幂级数的收敛区间和收敛半径;幂级数的收敛域考试区间端点的敛散性,幂级数在收敛区间内的和、差、积、商运算法则及可逐项微分与可逐项积分的性质;简洁函数的幂级数绽开;幂级数在收敛域内的和函数。 三考试要求 1、解常数项级数收敛、发散及收敛级数的和的概念,驾驭级数的基本性质及收敛的必要条件。 细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 2

28、、驾驭几何级数与P级数的收敛。 3、娴熟驾驭正确项级的比较收敛法、比值审敛法和根值审敛法。 4、会用莱布尼兹判别法判定交织级数的敛散性。 5、会判定随便项级数的确定收敛与条件收签。 6、娴熟驾驭幂级数的收敛半径、收敛区间及收敛域内的求法。 7、理解幂级数在其收敛区间内的基本性质,会求一些幂级数在收敛域内的和函数。 8、驾驭ex,sinx,cosx,ln(1+x)和(l+x)a幂级数绽开式,并会用它们求一些简洁函数的幂级数绽开式。第六部分:空间解析几何 一考试范围 1、两点间的距离 2、向量的定义及向量的坐标表示 3、向量的线性运算,向量的数量积及向量积 4、两向量垂直、平行的条件 5、平面方程

29、及点到平面的距离;两平面的位置关系 6、直线方程及两直线的夹角;两直线的位置关系 7、常见曲面:球面方程;圆柱面方程;圆锥面方程;旋转曲面方程。旋转椭球面,旋转抛物面 二考试要求 1、会求空间的两点距离 2、驾驭向量的定义及向量的坐标表示;会求向量的模,单位向量,细心收集 细心编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 向量的方向余弦。 3、熟识向量的线形运算,驾驭两向量平行的条件。 4、会求两向量的数量积或称内积,及两向量的夹角驾驭两向量垂直的充要条件 5、向量的向量积或称外积 .驾驭平面的点法式方程和一般方程,会求平面方程,了解两平面平行

30、、垂直、相交、重合的条件;会求点到平面的距离。 .驾驭直线的点向式方程和参数方程,会求直线的方程,了解两直线平行、垂直的条件。会求两直线的夹角。 .了解球面、圆柱面、圆锥面、旋转曲面等简洁面的方程,并能作出它们的草图。第七部分:常微分方程 一考试范围 1、常微分方程的概念:微分方程的解、通解、初始条件和特解 2、一阶可分别方程变量方程;齐次方程;一阶线性方程,贝努里方程;全微分方程 3、可降价的某些二阶方程 4、二阶常系数线性微分方程。 1、考试要求 a了解微分方程,微分方程的阶;微分方程的特解、通解、初始条件等概念。 b娴熟驾驭一阶可分别变量方程、齐次方程、一阶线性方程、贝努 细心收集 细心

31、编辑 精致阅读 如需请下载! 演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 里方程、全微分方程的解法。c会解以下可降价的二阶微分方程 y=?(x)不显含y的二阶方程:y=?(x,y)不显含x的二阶方程:y=?(y,y)d驾驭二阶线性微分方程通解结构 e娴熟驾驭二阶常系数线性非齐次方程的通解或特解自由项f(x)为a0+a1x+a2x2+anxneax 或a0+a1x+a2x2+anxneaxcosx 或?(x)=(a0+a1x+a2x2+anxn)eaxsinx 参考书书目 1、高等数学第四版上、下册,同济高校数学教研室主编高等教化出版社出版 2、高等数学 一微积分全国高等教

32、化自学考试教材高汝熹主编,武汉高校出版社出版 细心收集 细心编辑 精致阅读 如需请下载! 第四篇:考研高数大纲 2023年考研数学一考试大纲 考试形式和试卷结构: 一、试卷总分及考试时间 试卷总分为150分,考试时间为180分钟。 二、答题方式 答题方式为闭卷、笔试。 三、试卷内容结构 高等教学线性代数概率论与数理统计 四、试卷题型结构 单项选择题8填空题6解答题(包括证明题)9 约56% 约22% 约22% 小题,每题4分,共32分 小题,每题4分,共24分 小题,共94分 第五篇:专升本高数考试大纲 高等数学复习大纲参考书: 高等数学本科少学时类型上下册同济高校应用数学系编 高等教化出版社

33、 要 求: 一、函数与极限 考试内容:函数的概念基表示法、函数的有界性、单调性、周期性和函数的奇偶性、复合函数、反函数、分段函数和隐函数、数列的极限、函数的极限、无穷小与无穷大、极限的运算法则、极限的存在准则及两个重要极限、无穷小的比较、函数的连续与间断点、连续函数的运算与初等函数的连续性、闭区间上连续函数的性质最大值与最小值定理、介值定理 考试要求:理解复合函数及分段函数的概念;了解极限的概念,驾驭函数左极限与右极限的概念及极限存在与左、右极限之间的关系。驾驭极限的四则运算法则;了解极限存在的两个准则,驾驭利用两个重要极限求极限的方法;理解无穷小、无穷大的概念,了解无穷小的比较方法,会用等价

34、无穷小求极限;驾驭函数连续性的概念,会判别函数间断点的类型;了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质 最大值和最小值定理、介值定理。二、一元函数微分学 考试内容:导数的概念、导数的几何意义、函数的可导性与连续性之间的关系、函数和、差、积、商的求导法则、复合函数求导法则、初等函数的求导问题、二阶导数、隐函数的导数、由参数议程所确定函数的导数、函数的微分及其简洁应用。中值定理与导数的应用、中值定理、罗必塔法则、函数和曲线性态的探讨、函数单调性的判别、函数的极值及其求法、曲线的凸凹性的判别与拐点的求法、函数最大值和最小值的求法及简洁应用。 考试要求:理解导数的概念,驾驭导数与

35、微分的关系,驾驭导数的几何意义,会求平面曲线的切线方程和法线方程;驾驭用洛必达法则求未定式极限的方法;驾驭导数的四则运算法则和复合函数的求导法则,驾驭基本初等函数的导数公式,了解微分的四则运算法则,会求函数的微分,了解微分在近似计算中的应用;了解高阶导数概念,会求显函数、由隐函数和由参数方程所确定函数的一阶、二阶导数;了解罗尔定理、拉格朗日中值定理、柯西中值定理;驾驭用导数推断函数的单调性和求函数极值的方法,驾驭函数最大值和最小值的求法及其简洁应用;会用导数推断函数图形的凹凸性和拐点,会求函数图形的水平、铅直渐近线。三、一元函数积分学 考试内容:原函数和不定积分的概念、不定积分的基本性质、基本

36、积分公式、定积分的概念和基本性质、微积分基本公式牛顿一莱布尼茨公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简洁无理函数的积分、定积分的简洁应用。 考试要求:理解原函数概念,了解不定积分和定积分的概念;驾驭不定积分基本公式,了解不定积分和定积分的性质,驾驭换元积分法与分部积分法;会求简洁的有理函数、三角函数有理式及简洁无理函数的积分;了解变上限函数的定义,会求它的导数,驾驭牛顿一莱布尼茨公式;会利用定积分表达和计算一些几何量平面图形面积、旋转体体积。 四、微分方程 考试内容:常微分方程的概念、微分方程的解、阶、通解、初始条件和特解、可分别变量的微分方程、齐次方程、

37、一阶线性方程、二阶常系数齐次线性微分方程、二阶常系数非齐次线性微分方程。 考试要求:了解微分方程及其解、阶、通解、初始条件和特解等概念;驾驭可分别变量的微分方程及一阶线性方程的解法;驾驭齐次方程的解法;驾驭二阶常系数齐次线性微分方程的解法;会求二阶常系数非齐次线性微分方程的解。 五、向量代数与空间解析几何 考试内容:空间直坐标系、向量及其加减法、向量与数量的乘法、向量的坐标、数量积、向量积、平面及其方程、空间直线及其方程、曲面及其方程、空间曲线及其方程。 考试要求:理解空间直角坐标系,理解向量的概念及其表示;驾驭向量的运算线性运算、数量积、向量积,驾驭两个向量垂直、平行的条件;了解单位向量、模

38、长与方向余弦、向量的坐标表达式的概念,驾驭用坐标表达式进行向量运算的方法;会求简洁的平面方程和直线方程,会利用平面、直线的互相关系平行、垂直、相交等解决有关问题;了解曲面及方程的概念,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程;了解空间曲线的参数方程和一般方程 六、多元函数微分学 考试内容:多元函数、偏导数、全微分、全导数的基本概念及全微分存在的必要条件和充分条件、多元复合函数的求导法则、隐函数的导数、偏导数在几何上的应用、空间曲线的切线和法平面、曲面的切平面和法线,多元函数的极值与最值。 考试要求:理解多元函数的概念、理解二元函数的几何意义;了解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件;会求多元复合函数包括抽象函数的一阶偏导数;会求隐函数仅限于一个方程的情形的一阶偏导数;会求曲线的切线议程和法平面方程及曲面的切平面方程和法线方程;了解多元函数极值和条件极值的概念,了解二元函数极值存在的必要条件及二元函数极值存在的充分条件,会求简洁多元函数的最大值和最小值,并会解决一些简洁的应用问题。 姑v才他同时就会被个个讴歌飞头发有点少数人

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁