《条件概率与独立事件精选课件.ppt》由会员分享,可在线阅读,更多相关《条件概率与独立事件精选课件.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于条件概率与独立事件第一页,本课件共有24页1.古典概型的概念古典概型的概念2.古典概型的概率公式古典概型的概率公式知识回顾知识回顾1)1)试验的所有可能结果试验的所有可能结果(即即基本事件基本事件)只有只有有限个有限个,每次试验每次试验只出现只出现其中的其中的一个一个结果结果;2);2)每一个结果出现的每一个结果出现的可能性相同可能性相同。第二页,本课件共有24页样本空间我们将随机实验E的一切可能基本结果(或实验过程如取法或分配法)组成的集合称为E的样本空间第三页,本课件共有24页 100100个产品中有个产品中有9393个产品的长度合格,个产品的长度合格,9090个产品的质量合格,个产品
2、的质量合格,8585个产品的长度、质量个产品的长度、质量都合格。现在任取一个产品,若已知它的质都合格。现在任取一个产品,若已知它的质量合格,那么它的量合格,那么它的长度合格的概率是多少?长度合格的概率是多少?问题问题1 1:第四页,本课件共有24页 100个产品中有个产品中有93个产品的长度合格,个产品的长度合格,90个产个产品的重量合格,品的重量合格,85个产品的长度、重量都合格。现个产品的长度、重量都合格。现在任取一个产品,若已知它的重量合格,那么它的在任取一个产品,若已知它的重量合格,那么它的长度合格的概率是多少?长度合格的概率是多少?A=产品的长度合格产品的长度合格 B=产品的重量合格
3、产品的重量合格 AB=产品的长度、重量都合格产品的长度、重量都合格 在集合中,在集合中,“都都”代表着代表着“交交”,则,则A、B同时发生为同时发生为AB。分析:分析:第五页,本课件共有24页由已知可得:由已知可得:第六页,本课件共有24页任取一个产品,已知任取一个产品,已知其质量合格,其质量合格,则它的长度合格的概率为则它的长度合格的概率为由已知可得:由已知可得:容易发现:容易发现:这个概率与事件这个概率与事件A、B的概率有什么关系的概率有什么关系?第七页,本课件共有24页概括概括 求求B发生的条件下,发生的条件下,A发生的概率,称为发生的概率,称为B发发生时生时A发生的条件概率,记为发生的
4、条件概率,记为 。当当 时,时,其中,其中,可记为可记为 。类似地类似地 时,时,。A发生时发生时B发生的概率发生的概率第八页,本课件共有24页P(A|B)相当于把相当于把B看作新的看作新的基本事件空间基本事件空间,求求发生的发生的概率概率理理解解第九页,本课件共有24页例例 盒中有球如表盒中有球如表.任取一球任取一球 若已知取得是蓝球若已知取得是蓝球,问该球是玻璃球的概率问该球是玻璃球的概率.变式变式:若已知取得是玻璃球若已知取得是玻璃球,求取得是篮球的概率求取得是篮球的概率.A:取得是蓝球取得是蓝球,B:取得是玻璃球取得是玻璃球第十页,本课件共有24页例例 设设 100 件产品中有件产品中
5、有 70 件一等品,件一等品,25 件二等品,规件二等品,规定一、二等品为合格品从中任取定一、二等品为合格品从中任取1 件,求件,求(1)取得一等取得一等品的概率;品的概率;(2)已知取得的是合格品,求它是一等品的概已知取得的是合格品,求它是一等品的概率率 解解设设B表示取得一等品,表示取得一等品,A表示取得合格品,则表示取得合格品,则(1)因为因为100 件产品中有件产品中有 70 件一等品,件一等品,(2)方法方法1:方法方法2:因为因为95 件合格品中有件合格品中有 70 件一等品,所以件一等品,所以707095955 5第十一页,本课件共有24页联系:联系:区别区别:因而有因而有 (1
6、)在)在 中,事件中,事件 ,发生有时间上的差异,发生有时间上的差异,先先 后;而在后;而在 中,事件中,事件 ,同时发生。同时发生。事件事件 ,都发生了。都发生了。(2)样本空间不同,在)样本空间不同,在 中,事件中,事件 成为样本成为样本空间;在空间;在 中,样本空间为所有事件的总和。中,样本空间为所有事件的总和。概率概率 与与 的区别与联系的区别与联系第十二页,本课件共有24页问题问题2 2:从一副扑克牌(去掉大小王)中随机抽取从一副扑克牌(去掉大小王)中随机抽取1张,张,用用A表示取出牌表示取出牌“Q”,用,用B表示取出的是红桃,是否表示取出的是红桃,是否可以利用来计算?可以利用来计算
7、?二、独立事件二、独立事件第十三页,本课件共有24页A:表示取出的牌是:表示取出的牌是“Q”;B:表示取出的牌是红桃。:表示取出的牌是红桃。则称则称A,B相互独立相互独立如果A,B相互独立,则A与 ,与B,与 也相互独立。B发生时A发生的条件概率A发生的概率第十四页,本课件共有24页例例一一:一袋中有:一袋中有2个白球,个白球,2个黑球,做一次不放回抽样试个黑球,做一次不放回抽样试验,从袋中连取验,从袋中连取2个球,观察球的颜色情况,记个球,观察球的颜色情况,记“第一个取第一个取出的是白球出的是白球”为事件为事件A,“第二个取出的是白球第二个取出的是白球”为事件为事件B,试问试问A与与B是不是
8、相互独立事件?是不是相互独立事件?答:不是,因为件答:不是,因为件A发生时(即第一个取到白球)发生时(即第一个取到白球),事件事件B的概率的概率P(B)=1/3,而当事件,而当事件A不发生时不发生时 (即第一个取到的是黑球),事件(即第一个取到的是黑球),事件B发生的概率发生的概率P(B)=2/3,也就是说,事件,也就是说,事件A发生与否影响到事件发生与否影响到事件B发生发生的概率,所以的概率,所以A与与B不是相互独立事件。不是相互独立事件。第十五页,本课件共有24页四个射手独立地进行射击,设每人中靶的概率都是0.9.试求下列各事件的概率.(1)4人都没有中靶;(2)4人都中靶;(3)2人中靶
9、,另2人没有中靶.例二例二第十六页,本课件共有24页不可能同时发生的不可能同时发生的两个事件叫做互斥两个事件叫做互斥事件事件.如果事件如果事件A A(或(或B B)是否)是否发生对事件发生对事件B B(或(或A A)发)发生的概率没有影响,这样生的概率没有影响,这样的两个事件叫做相互独立的两个事件叫做相互独立事件事件 .P(A+B)=P(A)+P(B)P(AB)=P(A)P(B)互斥事件互斥事件A A、B B中中有一个发生,记有一个发生,记作作 A+BA+B相互独立事件相互独立事件A A、B B同时同时发生记作发生记作 A A B B第十七页,本课件共有24页 设抽取出甲乙两位同学,设抽取出甲
10、乙两位同学,A A为甲近视,为甲近视,B B为乙近为乙近视,甲乙是否近视,是相互独立的,即视,甲乙是否近视,是相互独立的,即A A、B B相互独相互独立立,要求,要求A A、B B同时发生的概率,直接利用公式即可。同时发生的概率,直接利用公式即可。例例三、三、调查发现,某班学生患近视的概率为调查发现,某班学生患近视的概率为0.4,现,现随机抽取该班级的随机抽取该班级的2名同学进行体检,求他们都近视名同学进行体检,求他们都近视的概率。的概率。分析:分析:解:解:记记A为甲同学近视,为甲同学近视,B为乙同学近视,则为乙同学近视,则A、B相相互独立,且互独立,且 ,则,则第十八页,本课件共有24页例
11、例四四:制制造造一一种种零零件件,甲甲机机床床的的正正品品率率是是0 0.9.9,乙乙机机床床的的正正品率是品率是0.950.95,从它们制造的产品中各任抽一件,从它们制造的产品中各任抽一件,(1 1)两件都是正品的概率是多少?)两件都是正品的概率是多少?(2 2)恰有一件是正品的概率是多少?)恰有一件是正品的概率是多少?解:设解:设A=从甲机床制造的产品中任意抽出一件是正品;从甲机床制造的产品中任意抽出一件是正品;B=从乙机床制造的产品中任意抽出一件是正品,则从乙机床制造的产品中任意抽出一件是正品,则A与与B是独立事件是独立事件P(AB)=P(A)P(B)=09095=0855P(A B)+
12、P(A B)=P(A)P(B)+P(A)P(B)=09(1-095)+(1-09)095=014答:两件都是正品的概率是0855恰有一件是正品概率是014另解:1 -P(AB)-P(AB)=1-0855-(1-095)(1-09)=014第十九页,本课件共有24页例五例五.甲、乙二人各进行甲、乙二人各进行1 1次射击比赛,如果次射击比赛,如果2 2人击中目标的概人击中目标的概率都是率都是0.60.6,计算:,计算:(1 1)2 2 人都击中目标的概率;人都击中目标的概率;(2 2)其中恰有)其中恰有1 1人击中目标的概率;人击中目标的概率;(3 3)至少有一人击中目标的概率。)至少有一人击中目
13、标的概率。第二十页,本课件共有24页例例六六:有甲、乙两批种子,发芽率分别是:有甲、乙两批种子,发芽率分别是0 0.8.8、0.70.7,在两,在两批种子中各取一粒,批种子中各取一粒,A=A=由甲批中取出一个能发芽的种子,由甲批中取出一个能发芽的种子,B=B=由乙批中抽出一个能发芽的种子由乙批中抽出一个能发芽的种子A A、B B是否互相独立?是否互相独立?两粒种子都能发芽的概率?两粒种子都能发芽的概率?至至少有一粒种子发芽的概率?少有一粒种子发芽的概率?恰好有一粒种子发芽的概率恰好有一粒种子发芽的概率?解:解:A、B两事件不互斥,是互相独立事件两事件不互斥,是互相独立事件 AB=两粒种子都能发
14、芽两粒种子都能发芽 P(AB)=P(A)P(B)=0.80.7=0.56 1 P(A B)=1-P(A)P(B)=1-(1-0.8)()(1-0.7)=0.94P(A B)+P(AB)=P(A)P(B)+P(A)P(B)=0.8(1-0.7)+(1-0.6)0.7=0.38答:两粒种子都能发芽的概率是答:两粒种子都能发芽的概率是056;至少有一粒种子能发芽的概率是;至少有一粒种子能发芽的概率是094;恰好有一粒种子能发芽的概率是;恰好有一粒种子能发芽的概率是038第二十一页,本课件共有24页例七例七.某人提出一个问题,规定由甲先答,答对的概率为某人提出一个问题,规定由甲先答,答对的概率为0.4
15、,若答对,则问题结束;若答错,则由乙接着答,但乙,若答对,则问题结束;若答错,则由乙接着答,但乙能否答对与甲的回答无关系,已知两人都答错的概率是能否答对与甲的回答无关系,已知两人都答错的概率是0.2,求问题由乙答出的概率。,求问题由乙答出的概率。解法一:设解法一:设P(乙答错)乙答错)=x,则由题意,得,则由题意,得 P(甲答错且乙答错)甲答错且乙答错)=0.2,P(由乙答出)由乙答出)=P(甲答错且乙答对)甲答错且乙答对)解法二:解法二:P(由乙答出)由乙答出)=1-P(由甲答出)由甲答出)-P(两人都未答出)两人都未答出)=1-0.4-0.2=0.4第二十二页,本课件共有24页推广:推广:对于对于n个相互独立的事件个相互独立的事件 ,则有则有 前面讨论了两个相互独立事件的概率公式,前面讨论了两个相互独立事件的概率公式,若若 、相互独立,则有相互独立,则有事实上,对于多个独立事件,公式也是成立的。事实上,对于多个独立事件,公式也是成立的。第二十三页,本课件共有24页2022/12/10感谢大家观看第二十四页,本课件共有24页