《事件的相互独立性 (1)教学文案.ppt》由会员分享,可在线阅读,更多相关《事件的相互独立性 (1)教学文案.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、事件的相互独立性(1)(1).条件概率条件概率设事件设事件A和事件和事件B,且,且P(A)0,在已知事件在已知事件A发发生的条件下事件生的条件下事件B发生的概率,叫做发生的概率,叫做条件概率条件概率。记作记作P(B|A).(2).条件概率计算公式条件概率计算公式:复习回顾复习回顾注意条件:必须注意条件:必须 P(A)0试一试试一试 判断事件判断事件A,B是否为互斥是否为互斥,互相独立事件互相独立事件?1.篮球比赛篮球比赛“罚球二次罚球二次”.事件事件A表示表示“第第1球罚中球罚中”,事件事件B表示表示“第第2球罚中球罚中”.2.篮球比赛篮球比赛“1+1罚球罚球”.事件事件A表示表示“第第1球罚
2、中球罚中”,事件事件B表示表示“第第2球罚中球罚中”.3.袋中有袋中有4个白球个白球,3个黑球个黑球,从袋中依此取从袋中依此取2球球.事件事件A:“取出的是白球取出的是白球”.事件事件B:“取出的是黑球取出的是黑球”(不放回抽取不放回抽取)4.袋中有袋中有4个白球个白球,3个黑球个黑球,从袋中依此取从袋中依此取2球球.事件事件A为为“取出的是白球取出的是白球”.事件事件B为为“取出的是白球取出的是白球”.(放回抽取放回抽取)A与与B为互相独立事件为互相独立事件A与与B不是互相独立事件不是互相独立事件A与与B为互相独力事件为互相独力事件A与与B为非互相独力也非互斥事件为非互相独力也非互斥事件例例
3、1 某商场推出二次开奖活动,凡购买一定价值的商某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是奖活动的中奖概率都是0.05,求两次抽奖中以下事件的求两次抽奖中以下事件的概率:概率:(1)都抽到某一指定号码;)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码。)至少有一次抽到某一指定号码。例例2 甲、乙二人各进行甲、乙二人各进行1 1次射
4、击比赛,如果次射击比赛,如果2 2人人 击中目标的概率都是击中目标的概率都是0.60.6,计算:,计算:(1)两人都击中目标的概率)两人都击中目标的概率;(2)其中恰由)其中恰由1人击中目标的概率人击中目标的概率(3)至少有一人击中目标的概率)至少有一人击中目标的概率解:解:(1)记记“甲射击甲射击1次次,击中目标击中目标”为为事件事件A.“乙射乙射击击1次次,击中目标击中目标”为为事件事件B.答:两人都击中目标的概率是答:两人都击中目标的概率是0.36且且A与与B相互独立,相互独立,又又A与与B各射击各射击1次次,都击中目标都击中目标,就是事件就是事件A,B同同时发生,时发生,根据相互独立事
5、件的概率的乘法公式根据相互独立事件的概率的乘法公式,得到得到P(AB)=P(A)P(B)=0.60.60.36例例2 甲、乙二人各进行甲、乙二人各进行1次射击比赛,如果次射击比赛,如果2人击人击中目标的概率都是中目标的概率都是0.6,计算:,计算:(2)其中恰有其中恰有1人击中目标的概率?人击中目标的概率?解:解:“二人各射击二人各射击1次,次,恰有恰有1人击中目标人击中目标”包括两种情况包括两种情况:一种是甲击中一种是甲击中,乙未击中(事件乙未击中(事件)答:其中恰由答:其中恰由1人击中目标的概率为人击中目标的概率为0.48.根据互斥事件的概率加法公式和相互独立根据互斥事件的概率加法公式和相
6、互独立事件的概率乘法公式,所求的概率是事件的概率乘法公式,所求的概率是另一种是另一种是甲未击中,乙击中(事件甲未击中,乙击中(事件B发生)。发生)。BA根据题意,这两根据题意,这两种情况在各射击种情况在各射击1次时不可能同时发生,即事件次时不可能同时发生,即事件B与与 互斥,互斥,例例2 甲、乙二人各进行甲、乙二人各进行1 1次射击比赛,如果次射击比赛,如果2 2人击中人击中目标的概率都是目标的概率都是0.60.6,计算:,计算:(3)至少有一人击中目标的概率)至少有一人击中目标的概率.解法解法1:两人各射击一次至少有一人击中目标的概率是两人各射击一次至少有一人击中目标的概率是解法解法2:两人
7、都未击中的概率是两人都未击中的概率是答:至少有一人击中的概率是答:至少有一人击中的概率是0.84.巩固练习巩固练习生产一种零件,甲车间的合格率是生产一种零件,甲车间的合格率是96%,乙车间的合格率乙车间的合格率是是97,从它们生产的零件中各抽取从它们生产的零件中各抽取1件,都抽到合格品件,都抽到合格品的概率是多少?的概率是多少?解:解:设从甲车间生产的零件中抽取设从甲车间生产的零件中抽取1件得到合格品为件得到合格品为事件事件A,从乙车间抽取一件得到合格品为事件,从乙车间抽取一件得到合格品为事件B。那么,。那么,2件都是合格品就是事件件都是合格品就是事件AB发发生,又事件生,又事件A与与B相互独
8、相互独立,所以抽到合格品的概率立,所以抽到合格品的概率为为答:抽到合格品的概率是答:抽到合格品的概率是例例3 在一段线路中并联着在一段线路中并联着3个自动控制的常开开关,只个自动控制的常开开关,只要其中有要其中有1个开关能够闭合,线路就能正常工作个开关能够闭合,线路就能正常工作.假定在假定在某段时间内每个开关闭合的概率都是某段时间内每个开关闭合的概率都是0.7,计算在这段时计算在这段时间内线路正常工作的概率间内线路正常工作的概率.由题意,这段时间内由题意,这段时间内3个开关是否能够闭合相个开关是否能够闭合相互之间没有影响。互之间没有影响。所以这段事件内线路正常工作的概率是所以这段事件内线路正常
9、工作的概率是答:在这段时间内线路正常工作的概率是答:在这段时间内线路正常工作的概率是0.973解:解:分别记这段时间内开关分别记这段时间内开关能够闭合为事件能够闭合为事件A,B,C.根据相互独立事件的概率乘法式这根据相互独立事件的概率乘法式这段时间内段时间内3个开关都不能闭合的概率是个开关都不能闭合的概率是巩固练习巩固练习1、在一段时间内,甲地下雨的概率是、在一段时间内,甲地下雨的概率是0.2,乙地下雨,乙地下雨的概率是的概率是0.3,假定在这段时间内两地是否下雨相互,假定在这段时间内两地是否下雨相互之间没有影响,计算在这段时间内:之间没有影响,计算在这段时间内:(1)甲、乙两地都下雨的概率;
10、)甲、乙两地都下雨的概率;(2)甲、乙两地都不下雨的概率;)甲、乙两地都不下雨的概率;(3)其中至少有一方下雨的概率)其中至少有一方下雨的概率.P=0.20.30.06P=(1-0.2)(1-0.3)=0.56P=1-0.56=0.442.某战士射击中靶的概率为某战士射击中靶的概率为0.99.若连续射击两次若连续射击两次.求求:(1)两次都中靶的概率两次都中靶的概率;(2)至少有一次中靶的概率至少有一次中靶的概率:(3)至多有一次中靶的概率至多有一次中靶的概率;(4)目标被击中的概率目标被击中的概率.分析分析:设事件设事件A为为“第第1次射击中靶次射击中靶”.B为为“第第2次射击中靶次射击中靶
11、”.又又 A与与B是互斥事件是互斥事件.“两次都中靶两次都中靶”是指是指“事件事件A发生且事件发生且事件B发生发生”即即AB P(AB)=P(A)P(B)=(2)“至少有一次中靶至少有一次中靶”是指是指(中中,不中不中),(不中不中,中中),(中中,中中)即即AB+AB+AB.求求P(AB+AB+AB)(3)“至多有一次中靶至多有一次中靶”是指是指(中中,不中不中),(不中不中,中中),(中中,中中)即即AB+AB+AB.求求P(AB+AB+AB)(4)“目标被击中目标被击中”是指是指(中中,不中不中),(不中不中,中中),(中中,中中)即即AB+AB+AB.求求P(AB+AB+AB)解题步骤
12、:解题步骤:1.用恰当的字母标记事件用恰当的字母标记事件,如如“XX”记为记为A,“YY”记为记为B.2.理清题意理清题意,判断各事件之间的关系判断各事件之间的关系(等可能等可能;互斥互斥;互独互独;对立对立).关键词关键词如如“至多至多”“至少至少”“同时同时”“恰有恰有”.求求“至多至多”“至少至少”事件概率时事件概率时,通常考虑它们的对立事件的概率通常考虑它们的对立事件的概率.3.寻找所求事件与已知事件之间的关系寻找所求事件与已知事件之间的关系.“所求事件所求事件”分几类分几类(考虑加法公式考虑加法公式,转化为互斥事件转化为互斥事件)还是分几步组成还是分几步组成(考虑乘法公式考虑乘法公式
13、,转化为互独事件转化为互独事件)4.根据公式解答根据公式解答1.射击时射击时,甲射甲射10次可射中次可射中8次次;乙射乙射10次可射中次可射中7次次.则则甲甲,乙同时射中乙同时射中同一目标的概率为同一目标的概率为_2.甲袋中有甲袋中有5球球(3红红,2白白),乙袋中有乙袋中有3球球(2红红,1白白).从每袋中任取从每袋中任取1球球,则则至少取到至少取到1个白球个白球的概率是的概率是_1415353.甲甲,乙二人单独解一道题乙二人单独解一道题,若甲若甲,乙能解对该题的概率乙能解对该题的概率分别是分别是m,n.则则此题被解对此题被解对的概率是的概率是_m+n-mn4.有一谜语有一谜语,甲甲,乙乙,
14、丙猜对的概率分别是丙猜对的概率分别是1/5,1/3,1/4.则三人中则三人中恰有一人猜对恰有一人猜对该谜语的概率是该谜语的概率是_1330P(A+B)=P(AB)+P(AB)+P(AB)=1-P(AB)7.在在100件产品中有件产品中有4件次品件次品.从中抽从中抽2件件,则则2件都是次品概率为件都是次品概率为_从中抽两次从中抽两次,每次每次1件则两次都抽出次品的概率是件则两次都抽出次品的概率是_(不放回抽取不放回抽取)从中抽两次从中抽两次,每次每次1件则两次都抽出次品的概率是件则两次都抽出次品的概率是_(放回抽取放回抽取)C42C1002 C41C31C1001C991 C41C41C1001
15、C10015.加工某产品须经两道工序加工某产品须经两道工序,这两道工序的次品率分别这两道工序的次品率分别为为a,b.且这两道工序互相独立且这两道工序互相独立.产品的合格的概率产品的合格的概率是是_.(1-a)(1-b)6.某系统由某系统由A,B,C三个元件组成三个元件组成,每个元件正常工作概率为每个元件正常工作概率为P.则系统正常工作的概率为则系统正常工作的概率为_ABCP+P2-P3求求较较复复杂杂事事件件概概率率正向正向反向反向对立事件的概率对立事件的概率分类分类分步分步P(A+B)=P(A)+P(B)P(AB)=P(A)P(B)(互斥事件互斥事件)(互独事件互独事件)独立事件一定不互斥独立事件一定不互斥.互斥事件一定不独立互斥事件一定不独立.结束语结束语谢谢大家聆听!谢谢大家聆听!20