《有关高中必修五数学知识点.docx》由会员分享,可在线阅读,更多相关《有关高中必修五数学知识点.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、有关高中必修五数学知识点高中必修五数学知识点(一)解三角形:1、正弦定理:在中,、分别为角、的对边,则有(为的外接圆的半径)2、正弦定理的变形公式:,;,;3、三角形面积公式:.4、余弦定理:在中,有,推论:(二)数列:1.数列的有关概念:数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集1,2,3,n上的函数。通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。递推公式:已知数列an的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。如:。2.数列的表
2、示:(1)列举法:如1,3,5,7,9,(2)图象法:用(n,an)孤立点表示。(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。3.数列的分类:4.数列an及前n项和之间的关系:高中必修五数学知识点梳理数列1、数列的定义及数列的通项公式:an?f(n),数列是定义域为N的函数f(n),当n依次取1,2,?时的一列函数值i。归纳法若S0?0,则an不分段;若S0?0,则an分段iii。若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?Sn?f(an)iv。若Sn?f(an),先求a1?得到关于an?1和an的递推关系式S?f(a)n?1?n?1?
3、Sn?2an?1例如:Sn?2an?1先求a1,再构造方程组:?(下减上)an?1?2an?1?2an?Sn?1?2an?1?12、等差数列:定义:an?1?an=d(常数),证明数列是等差数列的重要工具。通项d?0时,an为关于n的一次函数;d0时,an为单调递增数列;d0时,an为单调递减数列。n(n?1)2前n?na1?d,d?0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。性质:ii。若?an?为等差数列,则am,am?k,am?2k,仍为等差数列。iii。若?an?为等差数列,则Sn,S2n?Sn,S3n?S2n,仍为等差数列。iv若A为a,b的等差中项,则有A?3。等比数
4、列:定义:an?1an?q(常数),是证明数列是等比数列的重要工具。a?b2通项时为常数列)。前n项和需特别注意,公比为字母时要讨论。高中必修五数学知识点整理(1)定义:对于函数y=f(x)(xD),把使f(x)=0成立的实数x叫做函数y=f(x)(xD)的零点。(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。(3)函数零点的判定(零点存在性定理):如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0)的图象与零点的关系三二分法对于在区间a,b上连续不断且f(a
5、)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。1、函数的零点不是点:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。2、对函数零点存在的判断中,必须强调:(1)、f(x)在a,b上连续;(2)、f(a)f(b)0;(3)、在(a,b)内存在零点。这是零点存在的一个充分条件,但不必要。3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号
6、。利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间a,b上的图象是否连续不断,再看是否有f(a)f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点。判断函数零点个数的常用方法1、解方程法:令f(x)=0,如果能求出解,则有几个解就有几个零点。2、零点存在性定理法:利用定理不仅要判断函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。3、数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。已知函数有零点(方程有根)求参数取值常用的方法1、直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。2、分离参数法:先将参数分离,转化成求函数值域问题加以解决。3、数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。