《2022高中必修五数学知识点大全.docx》由会员分享,可在线阅读,更多相关《2022高中必修五数学知识点大全.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022高中必修五数学知识点大全高中必修五数学知识点【差数列的基本性质】公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。若a、b为等差数列,则ab与ka+b(k、b为非零常数)也是等差数列。对任何m、n,在等差数列a中有:a=a+(nm)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、一般地,如果l,k,p,m,n,r,皆为自然数,且l+k+p+=m+n+r+(两边的自然数个数相等),那么当a为等差数列时,有:a+a+a+=a+a+a+。公差为d的等差数列,从中取出
2、等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。如果a是等差数列,公差为d,那么,a,a,a、a也是等差数列,其公差为d;在等差数列a中,aa=aa=md、(其中m、k、)在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。当公差d0时,等差数列中的数随项数的增大而增大;当dm),则S=(ab)。等差数列a中,是n的一次函数,且点(n,)均在直线y=x+(a)上。记等差数列a的前n项和为S、若a0,公差d0,则当a0且a0时,S;若a0。两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。当q1且a0或00
3、且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q0时,等比数列为摆动数列。【集合】一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。2、集合的中元素的三个特性:1、元素的确定性;2、元素的互异性;3、元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。(4)集合元素的三个特
4、性使集合本身具有了确定性和整体性。3、集合的表示:如我校的队员,太平洋,大西洋,印度洋,北冰洋1、用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,52、集合的表示方法:列举法与描述法。注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法、用确定的条件表示某些对象是否属于这个集合的方法。
5、语言描述法:例:不是直角三角形的三角形数学式子描述法:例:不等式x32的解集是x?R|x32或x|x324、集合的分类:1、有限集含有有限个元素的集合2、无限集含有无限个元素的集合3、空集不含任何元素的集合例:x|x2=5二、集合间的基本关系1、包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2、相等关系(55,且55,则5=5)实例:设A=x|x21=0B=1,1元素相同结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集
6、合B,即:A=B任何一个集合是它本身的子集、AA真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)如果AB,BC,那么AC如果AB同时BA那么A=B3、不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集、三、集合的运算1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB(读作A交B),即AB=x|xA,且xB、2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集、记作:AB(读作A并B),即AB=x|xA,或xB、3、交集与并集的性质:AA=A,A=,AB=BA
7、,AA=A,A=A,AB=BA。4、全集与补集补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集、通常用U来表示。性质:CU(CUA)=A(CUA)(CUA)A=U【立体几何】柱、锥、台、球的结构特征棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。几何特征:两底面是对
8、应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底似,其相似比等于顶点到截面距离与高的比的平方。棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交
9、于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。几何特征:底面是一个圆;母线交于圆锥的.顶点;侧面展开图是一个扇形。圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。NO、2
10、空间几何体的三视图定义三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。NO、3空间几何体的直观图斜二测画法斜二测画法斜二测画法特点原来与x轴平行的线段仍然与x平行且长度不变;原来与y轴平行的线段仍然与y平行,长度为原来的一半。直线与方程直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜
11、角为0度。因此,倾斜角的取值范围是00,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。指数函数指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2)指数函数的值域为大于0的实数集合。(3)函数图形都是下凹的。(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半
12、轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。(8)显然指数函数无界。奇偶性定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(x)=f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(x)=f(x),那么函数f(x)就叫做偶函数。如果对于函数定义域内的任意一个x,f(x)=f(x)与f(x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶
13、函数。如果对于函数定义域内的任意一个x,f(x)=f(x)与f(x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。高中必修五数学知识点归纳排列组合排列P和顺序有关组合C不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2
14、)(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/(n-m)!_!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为n!/(n1!_2!_._k!).k类元素,每类
15、的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标)Pnm=n(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标)Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m20_-07-0813:30公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,
16、如9!=9从N倒数r个,表达式应该为n_n-1)_n-2).(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r高中必修五数学知识点分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不
17、同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。分层标准(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。(3)以那些有明显分层区分的变量作为分层变量。分层的比例问题按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。