《2022年数列与函数的极限公式概念 .pdf》由会员分享,可在线阅读,更多相关《2022年数列与函数的极限公式概念 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、极限与连续一、数列的极限定义:1、给定数列,如果当 n 无限增大时,其 通项无限趋过于某个常数A,则称数列 以 A为极限,记作:=A或者(n)2、当数列 以实数 A 为极限时,称数列 收敛于 A,否则称数列 发散。二、数列极限的性质:1)极限的惟一性:若数列收敛,则其极限惟一,若=a,则=a2)有界性:收敛数列必有界.(数列有界是数列收敛的必要非充分条件)3)数列的极限:如数列:,12,432,322,212nn则它的极限为 3 即:3121lim2lim)12(limnnnnnnn三、几个需要记忆的常用数列的极限01l i mnn11l i mnnn0l i mnnq)1(q)(l i m为
2、 常 数aaan四、运算法则:如果AanlimBbnl i m则:BAban)(limBAban)(l i m)0(,limBBAban二、函数极限:?函数极限=A的充分必要条件是=A?函数极限=A的充分必要条件是=A?分段函数极限与该点有无定义无关,只与左右极限有关.即存在=?函数极限的性质:1)极限的惟一性:若函数f(x)当(或)时有极限,则其极限惟一.?极限运算法则:设 limf(x)=A,limg(x)=B,则1)limf(x)=AB 2)limf(x)g(x)=AB 3)当 B时,lim=4)limcf(x)=climf(x)(c为常数)5)limf(x)=limf(x)(k 为常数
3、)?小结:当,时,有=当时当时当时?复合函数运算法则:=?数列的夹逼准则:设有 3 个数列,满足条件:1)(n=1,2,);2)=a,则数列 收敛,且=a?函数夹逼准则:设函数 f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件:1)g(x)f(x)h(x);2)=A,.则极限存在且等于 A.?单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限.?两个重要的极限:?重要极限:=1?重要极限:(1+=e,(1+x=e?无穷小的性质:文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z1
4、0B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J
5、1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G
6、7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7
7、L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1
8、B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2
9、N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码
10、:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N41)有限个无穷小的代数和为无穷小.2)有界变量与无穷小的乘积为无穷小.3)常量与无穷小的乘积为无穷小.4)有极限的量无穷小的乘积为无穷小.5)有限个无穷小的积为无穷小.?在某个自变量变化过程中limf(x)=A 的充要条件是f(x)=A+(x).其中(x)是该自变量变化过
11、程中的无穷小量.?无穷小的比较:设=(x),=都是自变量同一变化过程中的无穷小.1.若 lim=c(c,是常数),则称与 是同阶无穷小.2.若 lim=1,则称与 是等价无穷小,记作.3.若 lim=0,则称与 是高阶无穷小,记作=o()4.若 lim=c(c,k 是正整数),则称 与 是 k 阶无穷小.5.的充要条件为-是(或)的高阶无穷小,即或6.,都是自变量同一变化过程中的无穷小,且,lim存在,则有 lim=lim?常用等价无穷小:相乘的无穷小因子可用等价无穷小替换,加、减的不能 x时,x sinx tanx arcsinx arctanx ln(1+x);1-cosx;(1+x-1a
12、x(a);-1xlna(a 0,a);-1 常用等价无穷小:当变量0 x时,21sin,tan,arcsin,arctan,1,ln(1),1cos,2xxxxxxxxx exxxxx-1 11,(1)1 xxxxx?无穷大:函数无穷大无界x时,若 f(x)为无穷大,则为无穷小;x时,若 f(x)为无穷小,且在的某去心邻域内 f(x),则为无穷大.文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N
13、4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:
14、CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10
15、B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1
16、 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7
17、U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L
18、6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B
19、3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4注:分母极限为0,不能用商的运算法则?初等函数:连续函数经过四则运算所得到的函数仍是连续函数.一切初等函数在其定义区间内都是连续的.如果 f(x)是初等函数,是其定义区间内的点,则=f().最值定理:若函数 f(x)在闭区间 a,b上连续,则它在 a,b 上必有最值.有界性定理:若函数 f(x)在闭区间 a,b 上连续,则它在 a,b上有界.介值定理:若函数 f(x)在闭区间 a,b上连续,且 f(a)f(b),则
20、对于 f(a)与 f(b)之间的任何数,在开区间(a,b)内至少存在一点,使得 f()=.零点定理(根的存在性定理):若函数 f(x)在闭区间 a,b上连续,且 f(a)与 f(b)异号(f(a)f(b),在开区间(a,b)内至少存在一点,使得 f()=0 求极限:洛必达法则:1、0/0 型:方法:将分子分母分解因式(消去公因子)或者将分子有理化(有理化),再求极限。1、方法:将分子分母同时除以自变量的最高次幂。文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1
21、Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X
22、1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT
23、2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10
24、C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 Z
25、E1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5
26、P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4文档编码:CO1Z10B5X1J1 HT2G7U10C7L6 ZE1B3T5P2N4