《各地中考数学压轴题预测.pdf》由会员分享,可在线阅读,更多相关《各地中考数学压轴题预测.pdf(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习好资料欢迎下载yxBADCNG(M)DBCO(A)IyxBADCNMDBCGO(A)IyxNMDBCO(A)2010年各地中考数学压轴题预测1(2010 年江苏省泰州市济川实验初中中考模拟题)如图 1,把一个边长为22的正方形ABCD 放在平面直角坐标系中,点A在坐标原点,点C在 y 轴的正半轴上,经过B、C、D三点的抛物线c1交 x 轴于点 M、N(M在 N的左边).(1)求抛物线 c1的解析式及点M、N的坐标;(2)如图 2,另一个边长为22的正方形/DCBA的中心 G在点 M上,/B、/D在 x 轴的负半轴上(/D在/B的左边),点/A在第三象限,当点 G沿着抛物线c1从点 M移到点
2、 N,正方形随之移动,移动中/DB始终与 x 轴平行.直接写出点/A、/B移动路线形成的抛物线/)(cA、/)(cB的函数关系式;如图 3,当正方形/DCBA第一次移动到与正方形ABCD有一边在同一直线上时,求点 G的坐标答案:(1)y=21x2+4,M(22,0),N(22,0)yA=21x2+2,yB=21(x2)2+4G(113,313)2.(09 年福建厦门,11 分)已知二次函数yx2xc精品资料-欢迎下载-欢迎下载 名师归纳-第 1 页,共 14 页 -学习好资料欢迎下载(1)若点 A(1,a)、B(2,2n1)在二次函数yx2xc 的图象上,求此二次函数的最小值;(2)若点 D(
3、x1,y1)、E(x2,y2)、P(m,n)(mn)在二次函数yx2xc 的图象上,且D、E 两点关于坐标原点成中心对称,连接 OP当 2 2OP22时,试判断直线DE 与抛物线 yx2xc38的交点个数,并说明理由解析:(1)解:法 1:由题意得n2c,2n12c.1 分解得n1,c 1.2 分法 2:抛物线 yx2xc 的对称轴是x12,且12(1)212,A、B 两点关于对称轴对称.n2n1 1 分n1,c 1.2 分 有 yx2 x1 3 分(x12)254.二次函数yx2x1 的最小值是54.4 分(2)解:点 P(m,m)(m0),PO2m.2 22m22.2m12.5 分法 1:
4、点 P(m,m)(m0)在二次函数yx2xc 的图象上,mm2mc,即 c m22m.开口向下,且对称轴m1,当 2m 12时,有1c0.6 分法 2:2m12,1m12.1(m1)22.点 P(m,m)(m0)在二次函数yx2xc 的图象上,mm2mc,即 1c(m1)2.11c2.1c0.6 分 点 D、E 关于原点成中心对称,法 1:x2 x1,y2 y1.y1x12x1c,y1x12x1c.2y1 2x1,y1 x1.精品资料-欢迎下载-欢迎下载 名师归纳-第 2 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI
5、9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D1
6、0文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6
7、T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10
8、X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5
9、HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L
10、10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编
11、码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10学习好资料欢迎下载设直线 DE:ykx.有 x1kx1.由题意,存在x1x2.
12、存在 x1,使 x10.7 分k 1.直线 DE:y x.8 分法 2:设直线 DE:ykx.则根据题意有kxx2xc,即 x2(k1)xc0.1c0,(k1)24c0.方程 x2(k1)xc0 有实数根.7 分x1x20,k10.k 1.直线 DE:y x.8 分若y x,yx2xc38.则有x2c380.即 x2c38.当 c380 时,即 c38时,方程x2c38有相同的实数根,即直线 y x 与抛物线 yx2xc38有唯一交点.9 分当c380 时,即 c38时,即 1c38时,方程 x2c38有两个不同实数根,即直线 y x 与抛物线 yx2xc38有两个不同的交点.10 分当c38
13、0 时,即 c38时,即38c0 时,方程 x2c38没有实数根,即直线 y x 与抛物线 yx2xc38没有交点.11 分3如图,已知平面直角坐标系xOy中,点A(2,m),B(-3,n)为两动点,其中m 1,连结OAOB,精品资料-欢迎下载-欢迎下载 名师归纳-第 3 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC
14、7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10
15、T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:
16、CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4
17、D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 Z
18、K6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z
19、10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M
20、5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10学习好资料欢迎下载OAOB,作BCx轴于C点,ADx轴于D点(1)求证:mn=6;(2)当10AOBS时,抛物线经过AB,两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于PQ,两点,问是否存在直线l,使S
21、POF:SQOF=1:2?若存在,求出直线l对应的函数关系式;若不存在,请说明理由解:(1)AB,点坐标分别为(2,m),(-3,n),BC=n,OC=3,OD=2,AD=m,又OAOB,易证CBODOA,OABODACODOCB,mn32,mn=6 4(2)由(1)得,BOmOA3,又10AOBS,1102OB OA,即,20OABO602mBO,又92222nOCBCOB,60)9(2nm,又mn=6,2032mnm=6(舍去不合题意,m32),n=1A坐标为(2 6)B,坐标为(31),易得抛物线解析式为210yx 8(3)直线AB为4yx,且与y轴交于(0 4)F,点,4,OF假设存在
22、直线l交抛物线于PQ,两点,且使SPOF:SQOF=1:2,如图所示,则有PF:FQ=1:2,作PMy轴于M点,QNy轴于N点,P在抛物线210yx上,设P坐标为2(10)tt,则 FM=641022tt,易证PMFQNF,21QFPFFNMFQNPM,QN=2PM=-2t,NF=2MF=1222t,822tONQ点坐标为)82,2(2tt,Q点在抛物线210yx上,1048222tt,解得)3(,3舍去tt,P坐标为)7,3((,Q坐标为)2,32(,精品资料-欢迎下载-欢迎下载 名师归纳-第 4 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9
23、A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4
24、T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC
25、7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10
26、T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:
27、CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4
28、D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 Z
29、K6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10学习好资料欢迎下载易得直线PQ为43xy根据抛物线
30、的对称性可得直线PQ的另解为43xy14【说明:本卷由乌牛中学谢理福老师(665650)命题,实验中学俞志莉老师(660558)、城西中学全岳强审阅。各题可能有不同的正确解法,可参考上述步骤相应给分,各阅卷老师在确认答案正确无误后才可开始评卷 】4.已知关于x的一元二次方程22410 xxk有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数2241yxxk的图象向下平移8 个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线
31、12yxb bk与此图象有两个公共点时,b的取值范围.5(福建漳州满分14 分)如图 1,已知:抛物线212yxbxc与x轴交于AB、两点,与y轴交于点C,经过BC、两点的直线是122yx,连结AC(1)BC、两点坐标分别为B(_,_)、C(_,_),抛物线的函数关系式为_;(2)判断ABC的形状,并说明理由;(3)若ABC内部能否截出面积最大的矩形DEFC(顶点DEF、G在ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由6.(福建漳州本题满分9 分)如图 17,某公路隧道横截面为抛物线,其最大高度为6 米,底部宽度OM为 12 米.现以 O点为原点,C A O B x
32、 y C A O B x y 图 1 图 2(备用)(第 26 题)精品资料-欢迎下载-欢迎下载 名师归纳-第 5 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L1
33、0T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码
34、:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W
35、4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5
36、ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2
37、Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10
38、M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9
39、V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10学习好资料欢迎下载OM 所在直线为x 轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD-DC-CB,使 C、D点在抛物线上,A、B点在地面 OM上,则这个“支撑架”总长的最大值是多少?7(广西贺州本题满分10 分)如图,抛物线2124yxx的顶点为A,与 y 轴交于点B(1)求点 A、点 B的坐标(2)若点 P是 x 轴上任意一点,求证:PAPBAB(3)当PBP
40、A最大时,求点P的坐标8、(贵州安顺本题满分12 分)如图,已知抛物线与x交于 A(1,0)、E(3,0)两点,与y轴交于点B(0,3)。(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)AOB与 DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。9.(海南省13 分)如图12,已知抛物线经过坐标原点O和 x 轴上另一点E,顶点 M的坐标为 (2,4);矩B O A x y 第 28 题图精品资料-欢迎下载-欢迎下载 名师归纳-第 6 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:C
41、I9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D
42、10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK
43、6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z1
44、0X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5
45、 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2
46、L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档
47、编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10学习好资料欢迎下载形 ABCD 的顶点 A与点 O重合,AD、AB分别在 x
48、 轴、y 轴上,且AD=2,AB=3.(1)求该抛物线所对应的函数关系式;(2)将矩形 ABCD 以每秒 1 个单位长度的速度从图12 所示的位置沿x 轴的正方向匀速平行移动,同时一动点 P也以相同的速度从点 A出发向 B匀速移动,设它们运动的时间为t 秒(0t 3),直线 AB 与 该抛物线的交点为N(如图 13 所示).当 t=25时,判断点P是否在直线ME上,并说明理由;设以 P、N、C、D为顶点的多边形面积为S,试问 S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由24.(1)因所求抛物线的顶点M 的坐标为(2,4),故可设其关系式为224ya x(1 分)又抛物线经过O
49、(0,0),于是得20240a,(2 分)解得a=-1(3 分)所求函数关系式为224yx,即24yxx.(4 分)(2)点 P 不在直线 ME 上.(5 分)根据抛物线的对称性可知E 点的坐标为(4,0),又 M 的坐标为(2,4),设直线 ME 的关系式为y=kx+b.于是得4204bkbk,解得82bk所以直线ME 的关系式为y=-2x+8.(6 分)由已知条件易得,当t25时,OA=AP25,25,25P(7 分)P 点的坐标不满足直线ME 的关系式 y=-2x+8.当 t25时,点 P 不在直线 ME 上.(8 分)S存在最大值.理由如下:(9 分)点 A 在 x 轴的非负半轴上,且
50、N 在抛物线上,OA=AP=t.点 P,N 的坐标分别为(t,t)、(t,-t2+4t)AN=-t2+4t(0t3),图 13B C O A D E M y x P N 图 12B C O(A)D E M y x 精品资料-欢迎下载-欢迎下载 名师归纳-第 7 页,共 14 页 -文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10X4T5 ZK6T9A5W4D10文档编码:CI9V2L10T10M5 HC7X2Z10