动力电池行业深度报告:动力电池材料及结构创新未来展望.docx

上传人:X** 文档编号:53484043 上传时间:2022-10-26 格式:DOCX 页数:96 大小:2.04MB
返回 下载 相关 举报
动力电池行业深度报告:动力电池材料及结构创新未来展望.docx_第1页
第1页 / 共96页
动力电池行业深度报告:动力电池材料及结构创新未来展望.docx_第2页
第2页 / 共96页
点击查看更多>>
资源描述

《动力电池行业深度报告:动力电池材料及结构创新未来展望.docx》由会员分享,可在线阅读,更多相关《动力电池行业深度报告:动力电池材料及结构创新未来展望.docx(96页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、动力电池行业深度报告:动力电池材料及结构创新未来展望1、 碳中和背景下的新能源汽车行业1.1、 现状与未来:新能源汽车行业发展路线1.1.1、全球新能源汽车政策加码,积极拥抱碳中和面对 2020 年全球新冠疫情的冲击和影响,世界主要经济体都把疫情后的经济复苏突破口选在了“绿色复苏”上。截至 2021.6.30,已提出碳中和目标的国家有 34 个,正在酝酿提出碳中和目标的国家将近上百个,碳中和毋庸置疑已成为全 球大趋势,作为能源需求端最重要的场景之一,新能源汽车也成为了世界各国发 展的重点。中国:供应链优势明显, 2025 年新能源汽车销量预计占比保 25%争 30%补贴政策从经济性角度提振销量

2、,能量密度、安全性均在不同发展阶段被政策所 侧重,虽然购车成本仍是影响销量第一要素,但我国在电动汽车供应链已经积累 了较强的优势,成本快速下降,同时使用成本、体验的提升,以及智能化的加持, 行业已经进入市场化驱动时代。此外,特斯拉中国市场强劲的销量势头带来的“鲶 鱼效应”,也充分调动了国产电动汽车汽车和供应链的竞争意识,提高自身能力。我们预计,根据碳中和发展目标,中国燃油车的整体禁售有望在 2045 年前后, 不同省份时间和情况会有一定差异。目前,中国已经在新能源汽车供应链积累较 大优势,但销量渗透率仅 5.4%(2020 年),2019 年新能源乘用车典型企业平 均电耗为 15.95 kWh

3、/100km,技术始终是发展的原动力,行业仍然需要不断进 行技术创新。2020 年 11 月,国务院办公厅发布了新能源汽车产业发展规划 (2021-2035 年),计划到 2025 年纯电动乘用车新车平均电耗降至 12.0kWh/100km,新能源汽车新车销售量达到汽车新车销售总量的 20%左右, 高度自动驾驶汽车实现限定区域和特定场景商业化应用;计划到 2035 年,纯电 动汽车成为新销售车辆的主流,公共领域用车实现全面电动化,燃料电池汽车实 现商业化应用。我们认为,2025 年 20%的渗透率为新能源车长期规划的政策托 底,预计届时新能源车渗透率保 25%争 30%。规划还特别提到了鼓励车

4、用操作系统、动力电池的开发创新,加强轻量化、 高安全、低成本、长寿命的动力电池和燃料电池系统核心技术攻关,加快固态动 力电池技术研发及产业化。国家支持全产业链生态布局,推动生产工艺、关键装 备、智能制造的突破发展以及电池梯次利用。欧洲:碳排放约束+补贴,能源转型的先行者2020 年 9 月,欧盟委员会推出了2030 年气候目标计划,明确了将巴黎 协定下的欧盟国家自主贡献从先前的与 1990 年相比减排 40%的目标提高到 至少减排 55%,并制定了各经济部门实现目标的政策行动,其中到 2030 年计 划可再生能源发电占比从目前的 32%提高至 65%以上。在能源转型和碳排放约 束方面,欧洲走在

5、全球的前列,是有力的先行者、倡导者。在碳排放考核趋严的背景下,欧洲各政府(尤其是德国、法国)频繁发布政策支 持新能源产业的发展,主要为消费补贴政策,还涉及到基础设施建设、车企升级 扶持、产业链投资等各方面。2019 年 4 月出台的欧洲碳排新政于 2020 年 1 月开始执行,新政规定 2025、 2030 年欧盟新登记乘用车 CO2 排放量在 2021 年 95g/km 的基础上减 15%和 37.5%,分别达到81g/km和 59g/km,若不达标将面临巨额罚款:每超标1g/km, 罚款 95 欧元。假设年销量 1500 万辆燃油车,单车排放 115g/km,需要罚款 (115-95)15

6、0095=285 亿欧元。碳成本成为推动欧洲新能源汽车放量的重 要驱动力,低 CO2排放成为欧洲电动汽车技术的侧重点。欧盟政策加码,2035 年起提前结束内燃机时代。2021 年 7 月 9 日,根据 Bloomberg,欧盟的监管机构欧盟委员会计划要求新车和货车的排放量从 2030 年起下降 65%(相比于 1990 年水平),并从 2035 年起降至零,更严格的污染 排放标准将辅以规定各国政府加强车辆充电基础设施的规定;运输的清洁大修降 至下周公布的一系列的措施一部分,以制定更严格的 2030 年气候目标,将温室 气体排放从 1990 年水平减少 55%。同时,欧洲各国持续加大对新能源车购

7、车补贴等政策扶持,单车补贴最高可达 9000 欧元。如此一来,尽管 2020 年疫情肆虐导致汽车整体销量萎靡,新能源 汽车销量却在大力度优惠政策下迎来前所未有的增长。此外,碳成本在各能源要 素、汽车产业链、不同地区的转移会成为全球碳市场完善后更重要的考量因素, 涉及碳交易、碳关税等,也会充分改变全球新能源汽车产业及供应链的格局。美国:拜登政府雄心勃勃,积极提振新能源发展与特朗普政府不同的是,拜登政府出于国际竞争、内部政治、提振经济等因素大 力推动“绿色经济”及新能源发展。美国总统拜登上任时宣布了 2 万亿美元的基 建计划,其中有 1710 亿美元专门用于一系列电动出行措施,比如:支持汽车制 造

8、商建立国内原材料供应链,消费者将因购买美国制造的电动汽车而获得补贴和 税收优惠,还要求白宫近 65 万台的联邦车队全部换成电动汽车。(1)拜登政府规划至 2026 年美国的电动汽车份额将达到 25%,电动汽车年销 量达到 400 万辆;(2)到 2030 年,计划建立 50 万个电动车充电站组成全国性网络;美国轻型汽 车销量的 95%至 100%将达到零排放标准;(3)2035 年实现无碳发电;(4)2050 年实现净零排放目标和 100%的清洁能源经济。美国的政策取决于如何平衡各利益势力,与执政党和总统的政策密不可分,激进 的新能源发展策略一方面体现了拜登政府强化绿色发展执政思路,另一方面体

9、现 了美国对中国新能源快速发展和其供应链安全的担忧。因此,中国各新能源产业 链某些环节如果不受美国的制裁,将受益于美国新能源行业的发展;但部分核心 环节也将受制于美国的打压;我们认为,资源品、电池关键技术和部件、芯片产 业链等将首当其冲受制衡。1.1.2、全球新能源汽车销量大涨,动力电池出货量攀升尽管 2020 年的新冠疫情导致全球汽车总销量下滑了 14%,但全球电动汽车的销 量却在 2020 年逆势大涨,达到 320 万辆以上。根据 EV volumes 数据,2020 年全球新能源汽车的的销量为 324 万,而 2019 年同期为 226 万,同比增长了 43.36。2020 年新能源汽车

10、销售最多的国家分别是中国(137 万辆)、德国(40 万辆)、 美国(30 万辆)、法国和英国均为 20 万辆。在全球几大主要电动车市场中,欧 洲电动车总销量 139.5 万辆,占全球电动汽车销量的 43,成为世界第一大增 长极。新能源汽车良好的销量走势带动了动力电池装机量的连年攀升。根据 SNE Research 数据,2020 年全球汽车用动力电池装机量同比增长 17%,达到 137GWh。中国市场增长放缓,2020 年我国电池装车量累计 63.6GWh,同比增 长 2.3%。企业方面,宁德时代和 LG 新能源逐渐呈现双寡头格局,2020 年出货 量分别为 50GWh 和 48GWh,占据

11、了全球电池市场的半壁江山。中国市场:2020 年电动车渗透率 5.4%,宁德时代装机大幅领跑得益于我国强大的抗疫组织能力,2020 年我国新能源汽车销量态势良好,四月 起销量便企稳并不断回升。根据中汽协数据,2020 年我国新能源车销量 136.7 万辆,同比增长 10.9%。其中,纯电动汽车销量为 109.4 万辆,同比增 11.6%; 插电式混合动力汽车销量为 24.9 万辆,同比增长 8.4%,电动车渗透率从 2019 年的 4.7%提升至 2020 年的 5.4%。装机企业方面,宁德时代以总装机量 31.79GWh 无悬念登顶,且大比分领先其 他对手,占国内市场总装机量的一半;比亚迪排

12、名第二,市场份额达到 14.9%; 第三名 LG 化学装机量与前两名有不小的差距,为 4.13GWh,占市场总装机量 的 6.5%。1.1.3、未来新能源汽车及相关材料需求预测预计 2025 年我国新能源汽车销量突破 800 万辆,动力电池装机量 406GWh新能源汽车产业发展规划(2021-2035 年)倡导的电动化、智能化、网联化 将成为我国新能源汽车产业发展的新机遇。经过本轮升级,中国电动车产业未来 将更加具备国际竞争能力,并迎来更好的发展期。我们预计我国新能源汽车销量 未来 5 年复合增长率在 40%左右,到 2025 年有望超过 800 万辆,是 2020 年的 6.4 倍,是 20

13、21E(260 万辆)的 3.3 倍。按照 2025 年汽车总销量 2500 万辆预 计,新能源车销量渗透率达 32%。在电动汽车市场快速增长带动下,动力型锂离子电池继续保持快速增长势头。按 照正极材料分类动力电池可分为三元电池、磷酸铁锂电池及其他电池。根据目前 各细分车型的单车带电量,我们预计 2025 年国内装机量可达 406GWh, 2020-2025ECAGR 超过 40%,市场规模将达到 2640 亿元;其中三元电池装机 量达 247.5GWh,磷酸铁锂装机量达 158.8GWh。预计 2025 年海外新能源汽车销量 1500 万辆,动力电池装机量 757GWh我们根据各国新能源销量

14、情况,预测 2025 年海外新能源汽车销量 1500 万辆, CAGR-5 达到 50%。根据单车带电量假设,预计 2025 年海外动力电池装机量 757GWh,CAGR-5 将达到 51%。据乘联会数据,2020 年全球汽车销量 7803 万辆,海外 5303 万辆,假设 2025 年汽车总销量维持,则海外新能源车销量渗 透率达 28%。预计 2025 年全球三元正极材料需求量 34.6 万吨,磷酸铁锂 34.9 万吨原材料方面,根据单位耗用量假设 1kWh 所需三元材料 1.4kg,1kWh 所需磷酸 铁锂正极材料 2.2kg,考虑动力电池、3C 电池、储能电池以及其他领域的需求 量,我们

15、测算到 2025 年全球三元正极材料需求量 34.6 万吨,市场规模 589 亿 元;磷酸铁锂材料需求量为 34.9 万吨,市场规模达到 140 亿元。同样地,负极 材料到 2025 年的市场规模达到 195 亿元,总需求量 40.6 万吨。假设 1GWh 所需电解液 950 吨,制备 1 吨电解液需要六氟磷酸锂 0.1 吨,那么 到 2025 年全球六氟磷酸锂的需求量为 12.8 万吨;1kWh 所需隔膜面积为 17 平 方米,2025 年全球隔膜需求量为 176.5 亿平方米,市场规模为 60 亿元。1.2、 比较三种动力能效、排碳及经济性,锂电成长确定1.2.1、燃油、锂、氢三种动力源排

16、碳、能效及经济性汽、柴油作为传统车用燃料,统治汽车领域约百年的时间,在新能源革命的大潮 及全球碳中和的趋势下,车用动力的变革已经开始。“买得起、用得起”已经成 为不同动力汽车能否商业化推广放量的关键。(1)“用得起”:燃料要清洁、且成本要低。根据欧阳明高 2021 年中国电动 汽车百人会发言,从基于可再生能源的能源动力组合全链条能效分析,如果能源 供给侧端的电价相同,总体能效差别等于成本差别,充电电池能做的事情就可以 不用氢燃料电池,因为制氢的电价不会比充电电价更便宜。有一些场景用氢燃料 依然是不错的选择:长距离客运、货运(重卡、大巴、公交)、锂电能量衰减比 较快的地区(北方)、物流叉车、轮船

17、等;以及大规模储能、工业原料等。效率:根据壳牌公司,充电电动车全链条效率 77%,其中燃料生产环节效率 95%; 氢燃料电池车全链条 30%,其中燃料生产端 61%;电燃料内燃机汽车全链条 13%,其中燃料生产端 44%。针对于不同车用动力源的全生命周期排碳水平,全球氢燃料电池龙头巴拉德公司 也进行了测算,其核心结论在于:能源供给侧的清洁程度是决定因素,无论是锂 电池汽车还是氢燃料电池车,如果电力或者氢气来自于化石能源,那么其排碳水 平依然较高。所以若要能源需求侧的汽车使用端减碳,还是需要推动能源供给侧 使用清洁能源。如果能源供给侧均使用清洁能源,那么锂电池汽车和氢燃料电池 汽车全生命周期排碳

18、水平分别为 65-75 g/km;60-70 g/km。我们进一步分析:2025、2030 年欧盟新登记乘用车 CO2排放量目标需要在 2021 年 95g/km 的基础上分别减 15%和 37.5%,分别达到 81g/km 和 59g/km,若 要达到此目标,欧洲需要在 2030 年达到以清洁能源为主的能源体系,届时可以 同时采用锂电或者燃料电池车为主的汽车动力体系。我们基于当前各类动力汽车能源成本的经济性测算也可以得出类似结论:当前时 点在乘用车方面,电动(插电混动)汽车的使用经济性远好于汽油车和燃料电池 车(对于轿车类型,电动车的百公里成本约 10 元人民币,而汽油和燃料电池车 的百公里

19、成本分别达到 33 元人民币和 63 元人民币)。(2)“买得起”:通过技术研发、规模化降本,使汽车购买成本下降,达到可平价消费区间。目前看,锂电池车购买成本已经可以与传统燃油车相抗衡,进入 市场化快速放量阶段;氢能燃料电池车目前因为还处于规模化初期,仍需要 5-10 年时间通过规模化降本,作为锂电的互补,未来也值得期待。1.2.2、锂电行业成长确定,龙头公司大举扩张为了满足全球快速增长的动力电池需求,全球主要动力电池公司大举扩张,进入 了产能扩张期。根据主要动力电池厂公司公告整理,2020 年国内、海外动力电 池产能为 181/279GWh,2021-2023E 产能规划国内分别为 311/

20、517/757GWh (YOY 71%/67%/46%),海外分别为 429/604/754 GWh(YOY 54%/41%/25%)。1.2.3、产能周期、设备国产化、能耗约束将强化周期电解液:扩产周期较长,6F、VC 供应紧张电解液供应紧张,尤其受限于上游的 6F、VC 供应。2021 年以来,电解液价格 持续上涨,上游的 6F 价格涨幅大于电解液价格涨幅。根据 wind 数据,三元圆 柱 2.2Ah/磷酸铁锂/4.4V 高电压电解液价格 2021 年 1 月出的价格为 3.4/4/7.15 万元/吨,到 2021 年 6 月末,价格已上涨到 7.2/7.5/9.25 万元/吨,涨幅为 1

21、12%/88%/29%;6F 价格 2021 年 1 月初的价格为 11.25 万元/吨,到 2021 年 6 月末,价格已上涨到 31.5 万元/吨,涨幅为 180%。6F 较长的扩产周期使得今年供应持续紧张。6F 的扩产周期约 18 个月,目前全 球仅天赐、多氟多、新泰在今明年有新增产能,天赐材料的 6 万吨液态六氟要四 季度上线。近期各大厂商陆续宣布扩产计划:6 月 15 日,永太科技宣布投资年 产 2 万吨六氟磷酸锂项目,建设期预计为 3 年,可根据实际建设进度分次投产; 6 月 17 日,天赐材料宣布投资建设年产 15 万吨六氟磷酸锂项目,建设周期为 18 个月。但需注意的是这些产能

22、需到 2023 年才能逐步释放。VC 在 Q3 会有新产能陆续投放,将有效缓解短缺情况。2021 年以来,VC 供应 一直是电解液生产的主要瓶颈,根据鑫椤锂电数据,Q3 会有多家企业的 VC 产 能陆续释放,届时才会有效缓解 VC 供应的瓶颈问题。隔膜:设备面临国产化瓶颈、海外设备厂商不扩产隔膜需求量大涨,供应情况紧张。2021 年以来,根据鑫椤锂电数据,恩捷股份、 星源材质、中材科技三家头部隔膜企业持续满产运行,订单供应紧张;河北金力、 中兴新材、沧州明珠、惠强新能源等第二、三梯队隔膜企业的产能利用率也有明 显提升。隔膜生产对设备稳定性要求很高。隔膜设备停机时间越短越好,在不停止机器运 转的

23、情况下,产品的合格率会越来越高。如果设备稳定性较差,就会频繁停机处 理,导致隔膜的质量和一致性得不到保证。国产隔膜设备最主要的问题就在于设 备的稳定性较差,这使得隔膜厂商的设备主要依赖于进口。海外设备厂商不扩产,上游瓶颈明显。隔膜设备市场相对小众,主要的设备厂商 仅有日本制钢所、日本东芝、韩国明胜、德国布鲁克纳、法国伊索普等几家。这 几大厂商基本没有扩产计划,且未来几年的产能已经与各家隔膜企业绑定。在下 游电池需求大幅增长的情况下,未来 2-3 年隔膜产能将会成为整个产业链中的一 大瓶颈。负极:能耗约束带来石墨化瓶颈负极需求旺盛,主流厂商持续满产。根据鑫椤锂电数据,2021 年 1-4 月,主

24、要 负极企业产能利用率分别为 99%/95%/106%/111%。行业产能已经超负荷生产, 部分厂家已经开始依赖于外协代工增加产量。当前企业面临的不是订单压力,而 是生产能力瓶颈,特别是石墨化产能。石墨化瓶颈持续,预计 2022 年 H1 可以得到缓解。负极石墨化能耗较高,主要 产能(约 40%左右)分布在电价低廉的内蒙古地区。由于内蒙古能效双控原因, 今年石墨化产能受到很大影响。石墨化产能的扩建需要一定周期,根据鑫椤锂电 数据,新增石墨化产能今年 Q4 将陆续上线,预计 2022 年上半年石墨化产能得 到有效缓解。1.3、 资源约束、地缘政治,锂或成为行业发展掣肘2021 年 4 月 IEA

25、 出版的研究报告关键矿物在清洁能源转型中的作用(The Role of Critical Minerals in Clean Energy Transitions)显示,随着各国逐渐向清洁能 源迈进,电动汽车取代燃油车进程加速,2040 年锂的需求可能会比现在高出 50 倍,这意味着世界将面临锂的严重短缺。鉴于锂资源区域分布不均以及控制权高度集中,锂电市场会不可避免地受到价格 波动、地缘政治的影响。2021 年 2 月 25 日,美国白宫官网发公告称,拜登政府签署了第 14017 号行政 命令,将对四种产品的供应链展开为期一百天的审查,主要针对半导体芯片、电 动汽车大容量电池、稀土矿产品和药品

26、领域。6 月 8 日,拜登政府发布了一份逾 250 页的审查报告:“大容量电池行业:美国 严重依赖从国外进口制造先进电池组的原料,这使美国面临供应链漏洞,威胁到 依赖它们的关键技术和制造它们的劳动力的可用性和成本。到 2030 年,全球锂 电池市场预计将增长 5 到 10 倍,美国必须立即投资,扩大国内高容量电池的安 全、多样化供应链,支持高薪、高质量的工作,并自由公平地选择加入工会和集 体谈判。这意味着要抓住一个关键的机会,增加国内电池生产,同时投资扩大整 个锂电池供应链,包括电池生产中使用的关键矿物的采购和加工,一直到报废电 池的收集和回收。”6 月 9 日,美国参议院以 68 票赞成、3

27、2 票反对,通过一项总额 2,500 亿美元的 2021 年美国创新及竞争法。这项法案就是旨在提高美国科技,去面对中国 的竞争力。美国强化与盟友之前的联系,在锂资源层面对中国进行限制恐成为现 实,另外禁止中国供应链公司在外进行投资、扩张也会是美国的重要制裁手段。中国锂资源虽丰富,但受生产工艺的制约,资源品位较高的电池级碳酸锂、高纯 碳酸锂等还需从国外大量进口。中国优质的锂资源与世界其他地区相比较少,考 虑我国是锂电中游产业链以及下游应用市场核心,因此需要考虑资源掣肘。1.3.1、盐湖提锂:未来新增锂矿产能的重要主体资源禀赋决定提锂路线,我国盐湖提锂开发潜力巨大据中国有色金属工业协会锂业分会统计

28、,锂资源储量约为 714 万吨(金属锂吨), 其中青海地区的储量占全国的 43.4%,西藏地区的储量占全国的 31.1%,是占 比最高的两个地区。我国锂资源主要以盐湖卤水形式存在,占比高达 81.6%。 因此在全球锂电市场大跨步迈向 TWh 时代之际,加大我国盐湖锂资源的开发力 度势在必行,盐湖提锂也将构成未来我国甚至全球新增锂矿产能的主体。国内外不同盐湖镁锂比差异较大,各盐湖往往是根据资源禀赋特征采取不同的技 术路线。海外由于锂盐湖资源镁锂比低,摊晒条件优越并且矿区周边电力及运输 等配套设备齐全,因此多以盐田浓缩沉淀法为主,包括 SQM、南美 Salar de Atacama、Salar d

29、e Olaroz 等盐湖均采用该技术。 我国大部分盐湖卤水镁锂比高、钠锂比高、分离难度大,导致提锂过程中开发成 本高、开采环境恶劣、利用程度低、国外盐湖提锂技术在国内也不适用,这些原 因导致我国目前盐湖锂产量小、提纯技术不完善。我国盐湖提锂产能概况:已建成 8 万吨,规划产能约 12 万吨经过 20 年提锂工艺的不断探索,我国初步形成了三类可行的盐湖提锂路线,包括膜法(包括电渗析法和纳滤膜分离法)、吸附法和溶剂萃取法。吸附法是在低浓度的卤水中可以将锂分离出来,缺点是杂质含量高,需要进一步 的除杂工艺。目前国内比较成熟的膜法提锂工艺主要有电渗析法与纳滤膜法,主要应用在具有 高镁锂比的盐湖。电渗析

30、膜法主要应用于高浓度卤水,低浓度体系不适用。溶剂萃取法提锂工艺的优点是该技术适用于较高镁锂比盐湖,锂回收率能达到 97%以上。萃取法应用的核心是萃取剂,但是由于萃取剂对管道腐蚀严重并且萃 取剂对环境破坏较为严重,因此环境友好型是萃取剂迭代更新以及目前行业研究 的主要方向,目前多数新型萃取剂仍处于研究阶段 。4 月 9 日,青海省政府召开专题会议,审议通过行动方案编制工作方案,5 月 8 日编制建设世界级盐湖产业基地行动方案,5 月 15 日顺利通过省内专 家论证评审;5 月 20 日在北京召开专家论证会,获评审通过。1.3.2、锂电回收:产业闭环与摆脱锂约束的必然之选动力电池回收的必要性在动力

31、电池日益剧增的回收再生需求面前,我国政府自 2016 年以来已发布 10 余条相关国家级政策,搭建 20 余项重点国家标准体系框架,并在今年两会首次 将“动力电池回收”话题写入政府工作报告。构成锂电池的成分和结构较为复杂,包括钢/铝壳、铝集流体正极负载钴酸锂/ 磷酸铁锂/镍钴锰酸锂等、铜/镍/钢集流体负载碳、聚烯烃多孔隔膜、六氟磷酸 锂/高氯酸锂的碳酸二甲酯/碳酸乙烯酯/碳酸甲乙酯溶液等,如果不对已废弃的 锂电池进行回收,会对自然环境造成严重影响,将回收后的锂电池进行技术提取, 很多材料可以得到二次利用。未来,废旧动力锂电池回收将会形成一个十分庞大的市场。目前全球对于锂和稀 土资源供给(电池和

32、电机的核心矿物资源),还是围绕一次资源提取供给为主。 根据 IEA 的报告,当下中镍、钴的回收率还可以,但锂几乎没有回收能力(回收 率1%)。我们可以预见进入 TGWh 时代后,锂电池大规模退役,上游矿物资 源缺口会引发庞大的回收浪潮。锂电回收工序复杂,湿法和火法是主要技术路线锂离子电池的详细回收过程非常复杂,电池必须先进行预处理,包括放电、拆解、 粉碎、分选,通常采用火法和湿法两种技术路线:(1)火法冶金回收。火法冶金采用高温炉将金属氧化物成分还原为 Co、Cu、 Fe 和 Ni 等合金。该方法成功实现了从 LCO/石墨电池中优先回收 Co、Li2CO3 和石墨,从 LCO/LMO/NMC

33、废电池中优先回收 Li2CO3,从 LMO/石墨电池中优 先回收 Li2CO3 和 Mn3O4。(2)湿法冶金回收。湿法冶金采用水溶液从正极中提取目标金属,其中最常用 的水溶液电解质是 H2SO4/H2O2 体系。这种方法容易在室温下进行,但可能产 生大量废水,需要额外的废水处理成本。但是该方法可实现 Mn 的单独分离、高 纯度 Co 的提取以及 Li 与 Co 的高效分离。目前火法冶金工艺主要应用在欧洲和北美,该工艺从正极机料中回收 Co 和 Ni, 从负极集电器中回收 Cu,这仅占 LIBs 的重量的约 30%,因此只能回收少数材 料。湿法冶金工艺是国内主流路线,回收重点在于价值最高的正极

34、材料的回收。火法冶金和湿法冶金回收工艺都很大程度上取决于设备中钴的浓度高低。但是由 于电动汽车电池中的越来越低的钴含量,这些商业模式也可能越来越不适用。动力电池梯次利用与回收市场空间测算我们对未来三元电池的金属回收市场空间及磷酸铁锂电池的梯次利用与回收市 场空间设计了测算模型。对于三元电池,我们预测:2019 年预计可回收三元正极 0.13 万吨,随后逐年递 增至 2030 年的 29.25 万吨。1)NCM333:随着 2014 年安装的 NCM333 三元电池于 2019 年开始退役,2019 到 2022 年 NCM333 回收量逐步增加,2022 年达峰值 1.28 万吨,随后由于 N

35、CM333 的退出而逐步减少,至 2026 年回收量归零;2)NCM523:2016 年开始进入市场的 NCM523 于 2021 年开始报废回收,随后 回收量于 23-28 年稳定在 4-6 万吨之间,预计 2030 年上涨至 10.78 万吨;3)NCM622:2017 年进入市场的 NCM622 于 2022 年开始报废回收,回收量小 幅上涨,直到 28 年上涨幅度增加,预计 30 年可回收 6.03 万吨;4)NCM811:2018 年进入市场的 NCM811 于 2023 年开始报废回收,预计 30 年可增长至 12.44 万吨。预计 30 年可回收锂 2.09 万吨,镍 11.47

36、 万吨,钴 2.80 万吨,锰 3.23 万吨。对于磷酸铁锂电池,我们预测:1)2030 年,报废铁锂电池将达到 31.33 万吨;2)随着梯次利用逐年上升,预计 2030 年可梯次利用的铁锂电池达 109.93GWh, 共 25.06 万吨;其余 6.27 万吨进行拆解回收,可回收锂元素 0.28 万吨;3)2027 年梯次利用的磷酸铁锂电池将在 2030 年达到报废标准,此时拆解回收 8.604 万吨,可回收锂元素 0.379 万吨。二者总计可以回收锂元素 0.65 万吨。1.3.3、钠电产业化初期,未来或成为重要备选路线钠资源丰度高,新生代钠电池崭露头角锂在地壳中的含量较少,约占 0.0

37、065%且分布不均匀,70%的锂资源集中分布 在南美洲地区,而我国是全球锂资源第一进口国,80%的锂资源供应依赖进口。 如果不对锂电池进行回收提取二次利用,以现今锂电池行业的发展速度,几十年 后锂电池行业将因锂资源的缺少受到严重限制。钠与锂处于主族,具有相似的物理化学属性,但钠在地壳中的含量非常丰富,而 且钠分布于世界各地,相比于锂完全不受资源和地域的限制,所以钠离子电池比 起锂离子电池有更多的优势。2021 年 5 月 21 日,宁德时代董事长曾毓群在股东大会上透露,将于 2021 年 7 月份左右发布钠离子电池,再次引发市场对新型电池体系钠电的关注。钠电优势:成本低+储量大+兼容锂电设备钠

38、离子电池的工作原理:与锂离子电池的工作原理类似,钠离子电池同样是一种 嵌脱式“摇椅”电池,充电时钠离子从正极脱嵌进入负极,放电时钠离子从负极 进入正极,外电路电子从负极进入正极钠离子被还原成钠。钠离子电池的优势:(1)安全性高:已经通过了一些国标的测算。(2)成本低储量丰富:钠的资源储量丰富,钠离子电池的配件比锂离子电池便 宜,钠的化合物可作为电极材料,采用铁锰镍基正极材料相比较锂离子电池三元 正极材料,原料成本降低一半。(3)兼容现有的锂电设备:钠离子电池的工作机制与锂离子电池相同,电池公 司的现有生产设备可以直接用来生产钠离子电池。(4)无过放电特性:钠离子电池允许放电到 0V,能量密度大

39、于 100Wh/kg,可 与磷酸铁锂离子电池相媲美,但是钠电成本优势明显,有望在大规模储能中取代 传统铅酸电池。钠离子电池与锂电池差异:(1)正极材料:这是钠离子电池有别于锂离子电池最大的地方。目前的正极材 料主要有:钠过渡金属氧化物、钠过渡金属磷酸盐、钠过渡金属硫酸盐、钠过渡 金属普鲁士蓝类化合物。(2)负极材料:锂电池主要负极材料是石墨,只有高功率负极材料会用到软硬 碳材料和钛酸锂等。钠电负极是软碳、硬碳、过渡金属氧化物等,考虑负极材料 的成本、稳定性、循环性能等指标,最容易实现产业化仍然是碳材料,主要是软 硬碳。(3)电解质:钠盐+溶剂,除钠盐之外,溶剂与锂离子电池差别不大,一般为 碳酸

40、酯。(4)隔膜:与锂离子电池相同。(5)外形封装:圆柱、软包、方形,与锂离子电池相同。(6)制备工艺:与锂离子电池基本相同。钠离子电池商业化比较快的原因主要 就是可以沿用锂电池现成的设备、工艺。(7)应用场景:除了高能量密度要求的手机、无人机、乘用车以外,钠电有着 非常广泛的应用前景。如电动二轮车、电动三轮车、低速四轮车、家用储能产品、 数据中心、通信基站、新能源发电配套储能、电网级储能产品等。钠电产业化初期,中科海钠领先全球20 世纪 70 年代,人们开始了对于钠离子电池的研发。2011 年,全球首家专注 钠离子电池产业化的英国 FARADION 公司成立后,钠离子相关的研究迎来了全 面式增

41、长。目前国内外有近三十家企业对钠离子电池进行产业化相关布局,主要包括英国 FARADION 公司、美国 Natron Energy 公司、法国 Tiamat 公司、日本岸田化 学、松下、三菱化学以及中科海钠(中科院物理所背景)、钠创新能源(上海交 大背景)、星空钠电(国内外合作)等,此外电池巨头宁德时代也早早布局了钠 电的研发。在钠电体系的研发应用层面,国内代表企业中科海钠处于国际领先地位。中科海 钠成立于 2017 年,依托于中国科学院物理研究所的技术,目前在技术开发和产 品生产上都已初具规模。公司研发的钠离子电池的能量密度已达到 120 Wh/kg, 是铅酸电池的 3 倍左右,并于 201

42、8 年发布了全球首辆使用钠离子电池驱动的低 速电动汽车,于 2019 年建立了首座钠离子电池储能电站。中科海钠曾于 2021 年 3 月宣布完成亿元级 A 轮融资,投资方为梧桐树资本,融 资将用于搭建年产能 2000 吨的钠离子电池正、负极材料生产线。公司目前部分 钠离子电池体的产品处于产业化前期,但产品性能、成本控制以及适配应用场景 有待进一步检验。钠电补充了现有技术路线,未来锂电/钠电将是互补格局钠离子电池的出现是现有锂电池技术的补充,目前钠离子电池的能量密度可以做 到 150Wh/kg 上下,与磷酸铁锂电池、锰酸锂电池接近,循环寿命可以做到 30006000 次,与磷酸铁锂相当,优于锰酸

43、锂和三元材料,热稳定性和安全性 与磷酸铁锂基本相当。成本方面,以中科海钠数据为例,按照等容量软包电池成本分析,钠离子电池 BOM 理论成本比锂离子电池低 30%。但现阶段,与铁锂等成熟锂离子电池相比, 钠离子电池体系由于工艺不成熟、研发设备摊销大以及产品一致性等问题,造成 生产成本难以控制,BOM 成本优势难以发挥,钠电的性能和价格均处于劣势。 目前钠离子电池也尚无统一的标准体系及第三方检测认证机构,性能参数需要长 期且具体的测试数据来验证甄别。钠离子电池目前处于产业化初期,短期内难以与锂离子电池直接抗衡,更可能承 担补充/备选角色,其应用场景更可能是非锂电池主流应用领域,如低速电动车、 部分

44、储能、工程机械、基站通信备用电源等领域。因此,在产业链的完善、产品 系列的丰富、性能的成熟、标准的制定、市场的认可等方面,钠离子电池仍然有 很长的路要走。目前,CATL 的加入以及双碳目标的制订,可以大大加速这个过 程,我们预计在更远的未来,锂电/钠电将可能成为互补格局。2、 动力电池材料及结构创新未来展望锂离子电池主要由正极、负极、电解液和隔膜构成,目前广泛应用的正极材料选 用 Fe、Ni、Co、Mn 等金属氧化合物;负极选用石墨、硅碳等;电解液选用六 氟磷酸锂的有机溶剂;隔膜是聚丙烯/聚乙烯(PP/PE)高分子膜。动力电池技术的更迭在于原材料体系的性能优化以及封装工艺的改良,因此,材 料和

45、结构创新是动力电池行业的两条优选赛道,也是降本的必由之路。(1)中国动力电池技术创新已从政策驱动向市场驱动型;(2)电池材料创新主要平衡能量密度、寿命、快充、安全、成本等指标;(3)电池系统结构创新已成为近年来技术创新的鲜明特征。2.1、 正极:高镍三元、磷酸铁锂路线将长期并行动力电池中正极材料占整个电池成本的 40%以上,且在当前的技术条件下,整 体电池的能量密度提升主要取决于正极材料的优劣,因此,正极材料是锂离子电 池研究和开发的重中之重。在设计和选取锂离子电池正极材料时,要综合考虑比 能量、循环性能、安全性以及成本等因素。根据不同的材料体系,常见的正极材料可分为镍钴锰酸锂(NCM)、磷酸

46、铁锂 (LFP)、钴酸锂(LCO)、镍钴铝酸锂(NCA),以及新型材料如无钴正极、 四元正极材料等。各类正极材料的性能有差异,目前磷酸铁锂和三元是电动车行 业的两大主流电池技术路线,也是装车数量最多的两类动力电池。2.1.1、安全+成本优势明显,结构创新推动磷酸铁锂应用扩大基于 LiFePO4正极的锂离子电池充电时,锂离子经由电解液进入负极,Fe 2+氧化 成 Fe 3+,放电时则相反。本质上就是 LiFePO4与 FePO4的相互转化,转化过程 中两种物相晶胞参数的差距并不大,体积变化率也很低,这种微量的变化确保了 结构的稳定性,同时也保证了 LiFePO4电池的安全性。磷酸铁锂在安全性、循

47、环寿命及成本优势明显。磷酸铁锂是目前最安全的锂离子 电池正极材料,不含任何对人体有害的重金属元素。相较于镍钴锰化合物,磷酸铁锂的分子结构稳定性较好,具有更高的分解温度, 循环性能优势明显,三元锂电池循环寿命在 1500-2000 次左右,而磷酸铁锂在 100%DOD 条件下,可充放电 3000 次以上,倍率型电池的循环甚至可达上万圈。成本方面,铁和磷都是平价且资源丰度高的化学元素,其开采和提炼成本远没有 高镍三元正极高,和三元电池相比,磷酸铁锂电池的正极成本和电芯成本分别约 低 55%和 22%。磷酸铁锂和三元材料的元素属性决定了他们有各自的领域。从结构本质上讲,磷 酸铁锂的优势在于:结构稳定、充放电循环寿命较长,但同时也存在能量密度低, 充放电效率低,低温表现不佳的问题。相应的,三元的能量密度高、充放电效率 高,但同时也不耐高温。因此,在新能源汽车动力电池领域,两种电池都有各自 合适的定位和市场,不会出现一方替代另一方的现象。磷酸铁锂或将主导未来平价代步车、运营车、商用车市场。我们认为针对中高端 车型及主打差异化、品牌化的车型,优选具有大容量、高能量密度、快充效率更 高的三元锂离子电池;而针对平价代步车、运营车、商用车等对电池能量密度要 求相对较低,对安全性要求较高的车型,市场会优选具有寿命、成本、安

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 行业标准

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁