中级微观-第十八次课件.ppt

上传人:安*** 文档编号:53448170 上传时间:2022-10-26 格式:PPT 页数:73 大小:391.50KB
返回 下载 相关 举报
中级微观-第十八次课件.ppt_第1页
第1页 / 共73页
中级微观-第十八次课件.ppt_第2页
第2页 / 共73页
点击查看更多>>
资源描述

《中级微观-第十八次课件.ppt》由会员分享,可在线阅读,更多相关《中级微观-第十八次课件.ppt(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Chapter EighteenTechnology技术技术StructureuDescribing technologieslProduction set or technology setlProduction functionlIsoquantuMarginal productuReturns to scaleuTechnical rate of substitutionuWell-behaved technologiesuLong run and short runTechnologiesuA technology is a process by which inputs are co

2、nverted to an output.uE.g.labor,a computer,a projector,electricity,and software are being combined to produce this lecture.TechnologiesuUsually several technologies will produce the same product-a blackboard and chalk can be used instead of a computer and a projector.uWhich technology is“best”?uHow

3、do we compare technologies?Input Bundlesuxi denotes the amount used of input i;i.e.the level of input i.uAn input bundle is a vector of the input levels;(x1,x2,xn).Production Functions(生产函数)uy denotes the output level.uThe technologys production function states the maximum amount of output possible

4、from an input bundle.Production Functionsy=f(x)is theproductionfunction.xxInput LevelOutput Levelyy=f(x)is the maximal output level obtainable from x input units.One input,one outputTechnology SetsuA production plan is an input bundle and an output level;(x1,xn,y).uA production plan is feasible(可行)可

5、行)ifuThe collection of all feasible production plans is the production set(生产集生产集)or technology set(技术集)技术集).Technology Setsy=f(x)is theproductionfunction.xxInput LevelOutput Levelyy”y=f(x)is the maximal output level obtainable from x input units.One input,one outputy”=f(x)is an output level that is

6、 feasible from x input units.Technology SetsThe production set or technology set is Technology SetsxxInput LevelOutput LevelyOne input,one outputy”The technologysetTechnology SetsxxInput LevelOutput LevelyOne input,one outputy”The technologysetTechnicallyinefficientplansTechnicallyefficient plansTec

7、hnologies with Multiple InputsuWhat does a technology look like when there is more than one input?uThe two input case:Input levels are x1 and x2.Output level is y.uSuppose the production function isTechnologies with Multiple InputsuE.g.the maximal output level possible from the input bundle(x1,x2)=(

8、1,8)isuAnd the maximal output level possible from(x1,x2)=(8,8)isTechnologies with Multiple InputsuAn isoquant(等产量线等产量线)is the set of all possible combinations of inputs 1 and 2 that are just sufficient to produce a given amount of output.Isoquants with Two Variable Inputsy 8 8y 4 4x1x2Technologies w

9、ith Multiple InputsuThe complete collection of isoquants is the isoquant map.uThe isoquant map is equivalent to the production function-each is the other.uE.g.Isoquants with Two Variable Inputsy 8 8y 4 4x1x2y 6 6y 2 2Examples of TechnologiesuCobb-DouglasuFixed-Proportions TechnologiesuPerfect-Substi

10、tution TechnologiesCobb-Douglas TechnologiesuA Cobb-Douglas production function is of the formuE.g.withx2x1All isoquants are hyperbolic(双曲线双曲线),asymptoting(渐进渐进)to,but never touching any axis.Cobb-Douglas Technologiesx2x1All isoquants are hyperbolic,asymptoting to,but nevertouching any axis.Cobb-Dou

11、glas TechnologiesFixed-Proportions Technologiesx2x1minx1,2x2=144814247minx1,2x2=8minx1,2x2=4x1=2x2Perfect-Substitution Technologies93186248x1x2x1+3x2=18x1+3x2=36x1+3x2=48All are linear and parallelMarginal(Physical)ProductsuThe marginal product(边际产量边际产量)of input i is the rate-of-change of the output

12、 level as the level of input i changes,holding all other input levels fixed.uThat is,Marginal(Physical)ProductsE.g.ifthen the marginal product of input 1 isand the marginal product of input 2 isMarginal(Physical)ProductsTypically the marginal product of oneinput depends upon the amount used of other

13、 inputs.E.g.if then,and if x2=27 thenif x2=8,Marginal(Physical)ProductsuThe marginal product of input i is diminishing if it becomes smaller as the level of input i increases.That is,ifMarginal(Physical)ProductsandsoandBoth marginal products are diminishing.E.g.ifthenReturns-to-Scale(规模收益)uMarginal

14、products describe the change in output level as a single input level changes.uReturns-to-scale describes how the output level changes as all input levels change in direct proportion(e.g.all input levels doubled,or halved).Returns-to-ScaleIf,for any input bundle(x1,xn),then the technology described b

15、y theproduction function f exhibits constantreturns-to-scale(规模报酬不变)规模报酬不变).E.g.(k=2)doubling all input levelsdoubles the output level.Returns-to-Scaley=f(x)xxInput LevelOutput LevelyOne input,one output2x2yConstantreturns-to-scaleReturns-to-ScaleIf,for any input bundle(x1,xn),then the technology ex

16、hibits diminishingreturns-to-scale(规模报酬递减)规模报酬递减).E.g.(k=2)doubling all input levels less than doubles the output level.Returns-to-Scaley=f(x)xxInput LevelOutput Levelf(x)One input,one output2xf(2x)2f(x)Decreasingreturns-to-scaleReturns-to-ScaleIf,for any input bundle(x1,xn),then the technology exhi

17、bits increasingreturns-to-scale(规模报酬递增)规模报酬递增).E.g.(k=2)doubling all input levelsmore than doubles the output level.Returns-to-Scaley=f(x)xxInput LevelOutput Levelf(x)One input,one output2xf(2x)2f(x)Increasingreturns-to-scaleReturns-to-ScaleuA single technology can locally exhibit different returns-

18、to-scale.Returns-to-Scaley=f(x)xInput LevelOutput LevelOne input,one outputDecreasingreturns-to-scaleIncreasingreturns-to-scaleuPerfect substitutesuPerfect complementsuCobb-DouglasExamples of Returns-to-ScaleExamples of Returns-to-ScaleThe perfect-substitutes productionfunction isExpand all input le

19、vels proportionatelyby k.The output level becomesThe perfect-substitutes productionfunction exhibits constant returns-to-scale.Examples of Returns-to-ScaleThe perfect-complements productionfunction isExpand all input levels proportionatelyby k.The output level becomesThe perfect-complements producti

20、onfunction exhibits constant returns-to-scale.Examples of Returns-to-ScaleThe Cobb-Douglas production function isExpand all input levels proportionatelyby k.The output level becomesExamples of Returns-to-ScaleThe Cobb-Douglas production function isThe Cobb-Douglas technologys returns-to-scale iscons

21、tant if a1+an =1increasing if a1+an 1decreasing if a1+an 1.Returns-to-ScaleuQ:Can a technology exhibit increasing returns-to-scale even though all of its marginal products are diminishing?Returns-to-ScaleuQ:Can a technology exhibit increasing returns-to-scale even if all of its marginal products are

22、 diminishing?uA:Yes.uE.g.Returns-to-Scaleso this technology exhibitsincreasing returns-to-scale.But diminishes as x1increases anddiminishes as x1increases.Returns-to-ScaleuA marginal product is the rate-of-change of output as one input level increases,holding all other input levels fixed.uMarginal p

23、roduct diminishes because the other input levels are fixed,so the increasing inputs units have each less and less of other inputs with which to work.Returns-to-ScaleuWhen all input levels are increased proportionately,there need be no diminution of marginal products since each input will always have

24、 the same amount of other inputs with which to work.Input productivities need not fall and so returns-to-scale can be constant or increasing.Technical Rate-of-Substitution(技术替代率)uAt what rate can a firm substitute one input for another without changing its output level?Technical Rate-of-Substitution

25、x2x1y100100Technical Rate-of-Substitutionx2x1y100100The slope is the rate at which input 2 must be given up as input 1s level is increased so as not to change the output level.The slope of an isoquant is its technical rate-of-substitution.Technical Rate-of-SubstitutionuHow is a technical rate-of-sub

26、stitution computed?uThe production function isuA small change(dx1,dx2)in the input bundle causes a change to the output level ofTechnical Rate-of-SubstitutionBut dy=0 since there is to be no changeto the output level,so the changes dx1and dx2 to the input levels must satisfyTechnical Rate-of-Substit

27、utionrearranges tosoTechnical Rate-of-Substitutionis the rate at which input 2 must be givenup as input 1 increases so as to keepthe output level constant.It is the slopeof the isoquant.Technical Rate-of-Substitution;A Cobb-Douglas ExamplesoandThe technical rate-of-substitution isx2x1Technical Rate-

28、of-Substitution;A Cobb-Douglas Examplex2x1Technical Rate-of-Substitution;A Cobb-Douglas Example84x2x1Technical Rate-of-Substitution;A Cobb-Douglas Example612Well-Behaved TechnologiesuA well-behaved technology islmonotonic,andlconvex.Well-Behaved Technologies-MonotonicityuMonotonicity:More of any inp

29、ut generates more output.yxyxmonotonic notmonotonicWell-Behaved Technologies-ConvexityuConvexity:If the input bundles x and x”both provide y units of output then the mixture tx+(1-t)x”provides at least y units of output,for any 0 t 1.Well-Behaved Technologies-Convexityx2x1y100100Well-Behaved Technol

30、ogies-Convexityx2x1y100100Well-Behaved Technologies-Convexityx2x1y100100y120120Well-Behaved Technologies-Convexityx2x1Convexity implies that the TRSincreases(becomes lessnegative)as x1 increases.Well-Behaved Technologies Monotonicity and convexityx2x1y100100y5050y200200higher outputThe Long-Run and

31、the Short-RunsuThe long-run is the circumstance in which a firm is unrestricted in its choice of all input levels.uThere are many possible short-runs.uA short-run is a circumstance in which a firm is restricted in some way in its choice of at least one input level.The Long-Run and the Short-RunsuExa

32、mples of restrictions that place a firm into a short-run:ltemporarily being unable to install,or remove,machinerylbeing required by law to meet affirmative action quotaslhaving to meet domestic content regulations.The Long-Run and the Short-RunsuWhat do short-run restrictions imply for a firms techn

33、ology?uSuppose the short-run restriction is fixing the level of input 2.uInput 2 is thus a fixed input in the short-run.Input 1 remains variable.The Long-Run and the Short-Runsx1yFour short-run production functions.The Long-Run and the Short-Runs is the long-run productionfunction(both x1 and x2 are variable).The short-run production function whenx2 1 isThe short-run production function when x2 10 isThe Long-Run and the Short-Runsx1yFour short-run production functions.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁