高一函数的奇偶性ppt精选文档.ppt

上传人:石*** 文档编号:52095668 上传时间:2022-10-21 格式:PPT 页数:22 大小:1.94MB
返回 下载 相关 举报
高一函数的奇偶性ppt精选文档.ppt_第1页
第1页 / 共22页
高一函数的奇偶性ppt精选文档.ppt_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《高一函数的奇偶性ppt精选文档.ppt》由会员分享,可在线阅读,更多相关《高一函数的奇偶性ppt精选文档.ppt(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一函数的奇偶性ppt本讲稿第一页,共二十二页本讲稿第二页,共二十二页xyOxyO f(x)=x2 f(x)=|x|x -2-1012 y 41014 x -2-1012 y 21012 问题:问题:1 1、对定义域中的每一个、对定义域中的每一个x x,-x-x是否也在定义域内?是否也在定义域内?2 2、f(x)f(x)与与f(-x)f(-x)的值有什么的值有什么关系?关系?本讲稿第三页,共二十二页函函数数y=f(x)y=f(x)的的图图象象关关于于y y轴对轴对称称1 1、对对定定义义域中的每一域中的每一 个个x x,-x-x是也在定是也在定义义 域域内内;2 2、都有都有f(x)=f(-x

2、)f(x)=f(-x)如果如果对对于函于函数数f(x)f(x)的定的定义义域域为为A A。如。如果果对对任意任意的的x A A,都有都有 f(-x)=f(x)f(-x)=f(x),那那么称么称函函数数y=f(x)y=f(x)是偶函是偶函数数。本讲稿第四页,共二十二页(1)下列说法是否正确,为什么?)下列说法是否正确,为什么?(1)若)若f(2)=f(2),则函数,则函数 f(x)是偶函数是偶函数(2)若)若f(2)f(2),则函数,则函数 f(x)不是偶函数不是偶函数(2)下列函数是否为偶函数,为什么?)下列函数是否为偶函数,为什么?。(A)(B)(C)(D)本讲稿第五页,共二十二页 观察下面

3、两个函数填写表格观察下面两个函数填写表格-30 xy123-1-2-1123-2-30 xy123-1-2-1123-2-3f(x)=x本讲稿第六页,共二十二页3210-1-2-3-1x-3-2012 3f(-3)=-3=0 xy123-1-2-1123-2-3f(-x)-f(x)f(x)=xf(-1)=-1f(-2)=-2=x-x表(表(3)-f(1)=-f(2)-f(3)=f(x)=x本讲稿第七页,共二十二页0 xy123-1-2-1123-2-3 f(-3)=-f(3)f(-1)=-1=-f(1)f(-2)=-f(2)f(-x)=-f(x)13210-2-3x-1-1表(表(4)本讲稿第

4、八页,共二十二页函数函数y=f(x)的图象的图象关于原点对称关于原点对称1、对定义域中的每一、对定义域中的每一 个个x,-x是也在定义是也在定义 域内;域内;2、都有、都有f(-x)=-f(x)如果对于函数如果对于函数f(x)的定义域为的定义域为A。如果。如果对对任意任意一个一个xA,都有都有 f(-x)=-f(x),那么称函数那么称函数f(x)是奇函数是奇函数。本讲稿第九页,共二十二页 判定函数奇偶性基本方法判定函数奇偶性基本方法:定义法定义法:先看先看定义域定义域是否是否关于原点对称关于原点对称,再看再看f(-x)f(-x)与与f(x)f(x)的关系的关系.图象法图象法:看图象是否关于原点

5、或看图象是否关于原点或y y轴对称轴对称.如果一个函数如果一个函数f(x)是奇函数或偶函数,是奇函数或偶函数,那么我们就说函数那么我们就说函数f(x)具有具有奇偶性奇偶性.本讲稿第十页,共二十二页 奇函数奇函数 偶函数偶函数 函数可划分为函数可划分为四类四类:既奇又偶函数既奇又偶函数 非奇非偶函数非奇非偶函数说明:说明:1 1、根据函数的奇偶性、根据函数的奇偶性f(x)=0 xR本讲稿第十一页,共二十二页非奇非偶函数非奇非偶函数0 xy123-1-2-1123-2-3如:如:0 xy123-1-2-1123-2-3y=3x+1y=x2+2x本讲稿第十二页,共二十二页即是奇函数又是偶函数的函数即

6、是奇函数又是偶函数的函数0 xy123-1-2-1123-2-3如:如:y=0本讲稿第十三页,共二十二页2 2、奇、偶函数定义的逆命题也成立、奇、偶函数定义的逆命题也成立,即,即 若若f(x)f(x)为奇函数,则为奇函数,则f(-x)=-f(x)有成立有成立.若若f(x)f(x)为偶函数,则为偶函数,则f(-x)=f(x)有成立有成立.3、奇、偶函数性质:、奇、偶函数性质:偶函数的偶函数的 定义域关于原点对称定义域关于原点对称 图象关于图象关于y轴对称轴对称 奇函数的奇函数的 定义域关于原点对称定义域关于原点对称 图象关于原点对称。图象关于原点对称。本讲稿第十四页,共二十二页如果一个函数是偶如

7、果一个函数是偶函数函数,则则它的图象关它的图象关于于y轴对称轴对称。y=x2偶函数的图像特征偶函数的图像特征反过来,反过来,如果一个函数的图象如果一个函数的图象关于关于y轴对称,轴对称,则则这个函数为偶函这个函数为偶函数数。本讲稿第十五页,共二十二页,是偶函数吗?是偶函数吗?问题:问题:0 x123-1-2-3123456y不是。不是。性质:偶函数的定义域关于原点对称性质:偶函数的定义域关于原点对称解解:本讲稿第十六页,共二十二页y=x2例:例:性质:性质:偶函数在关于原点对称的区间上单调性相反。偶函数在关于原点对称的区间上单调性相反。本讲稿第十七页,共二十二页问题:问题:是奇函数吗?是奇函数

8、吗?-30 xy123-1-2-1123-2-3解:解:不是。不是。性质:奇函数的定义域关于原点对称。性质:奇函数的定义域关于原点对称。本讲稿第十八页,共二十二页性质:性质:奇函数在关于原点对称的区间上单调性一致奇函数在关于原点对称的区间上单调性一致例:例:y=x30本讲稿第十九页,共二十二页六、应用六、应用:例例1 1 判断下列函数的奇偶性判断下列函数的奇偶性 1.y=-2x1.y=-2x2 2+1,x+1,x R;R;2.f(x)=-x 2.f(x)=-xx x;3.y=-3x+1;3.y=-3x+1;4.f(x)=x 4.f(x)=x2 2,x,x-3,-2,-1,0,1,2;-3,-2

9、,-1,0,1,2;5.y=0,x 5.y=0,x-1,1;-1,1;是偶函数是偶函数是奇函数是奇函数不是奇函数也不是偶函数不是奇函数也不是偶函数非奇非偶函数非奇非偶函数非奇非偶函数非奇非偶函数亦奇亦偶函数亦奇亦偶函数既是奇函数也是偶函数既是奇函数也是偶函数本讲稿第二十页,共二十二页例例3 如图是奇函数如图是奇函数y=f(x)图象图象的一部分,试画出函数在的一部分,试画出函数在y轴轴左边的图象。左边的图象。xy0例例4 4 已知已知y=f(x)y=f(x)是是R R上的奇函数,当上的奇函数,当x0 x0时,时,f(x)=xf(x)=x2 2+2x-1 +2x-1,求函数的表达式。,求函数的表达式。本讲稿第二十一页,共二十二页练习练习:判断下列函数的奇偶性:(1)解:定义域为R f(-x)=(-x)4=f(x)即f(-x)=f(x)f(x)偶函数(2)解:定义域为R f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)f(x)奇函数(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)f(x)奇函数(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x)即f(-x)=f(x)f(x)偶函数本讲稿第二十二页,共二十二页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁