曲线的极坐标方程.ppt

上传人:小** 文档编号:3815263 上传时间:2020-10-28 格式:PPT 页数:16 大小:94.52KB
返回 下载 相关 举报
曲线的极坐标方程.ppt_第1页
第1页 / 共16页
曲线的极坐标方程.ppt_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《曲线的极坐标方程.ppt》由会员分享,可在线阅读,更多相关《曲线的极坐标方程.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,曲线的极坐标方程,52 曲线的极坐标方程 在极坐标系中,用,=0表示曲线的方 程 。 一些基本曲线的方程: =r =0 (0) =0 (R),o x,o x,0,0,r,o,o,x,x,o,P,P(2,,P(,2/3, = 2, = ,2,3,o,o,o,o,x,x,x,x,c(a,0),c(a,/2),c(a,),c(a,-/2),P(,),P(,),P(,),P(,),=2acos,=2acos( -)= -2acos ,=2acos( -3/2)= -2asin,=2asin,x,x,x,x,P(,),P(,),P(,),P(,),o,o,o,o,a,a,a,a,=asec,=acsc

2、,=asec(-3/2)=-acsc,=asec(- )= -asec,),c(0,0),r,a,P(,),P(,),余弦定理,r2= 2+02- 2 0cos(-0),正弦定理, = ,sin(-),a,sin(-), = ,asin,sin(-),o,o,x,x,P47 三种圆锥曲线的统一的极坐标方程 动点M到定点(焦点)F与到定直线(准线)L的 距离的比为e,求点M的极坐标方程。 分析:以焦点F为极点, 如图建立极坐标系。F到L 的离|FK|=p,M,为轨 轨上的任一点。 把条件 = e,用极坐标表示=e 解出 = ,K,F,H,M(,),x,|MF|,|MH|,P+cos,ep,1-e

3、cos,上述方程统一表示椭圆、双曲线、抛物线,F,L,x,L,F,x,x,F,L,当0e1时,方程表示椭圆,F是左焦点,L是左准线。,当1e时,方程表示双曲线,F是右焦点,L是右准线。,当e=1时,方程表示抛物线,F是焦点,L是准线,开口向右。,圆锥曲线极坐标方程的应用 例 5 (1) 以抛物线y2=5x的焦点为极点,对称轴 向右的方向为极轴的正方向,且x轴与极轴的 长度单位相同,求抛物线的极坐标方程。 分析:设所求的抛物线的极坐标方程为 = ,基中e=1,p是焦点到准线的 距离,p= ,代入上式得所求的抛物线 = = ,ep,1-ecos,5,2,1- cos,1 ,2,5,2- 2cos,

4、5,(2) 以椭圆 + = 1的左焦点为极点,长轴 向右的方向为极轴的正方向,且x轴与极轴的 长度单位相同,求椭的极坐标方程。 分析:根据已知条件,可设所求的椭圆的 极 坐标方程为 = ,由椭圆的直角坐标 方程求得 a=5,b=4,c=3,e= , p= -3+ = ,代入上式 = = ,x2,y2,16,25,ep,1-ecos,3,5,3,25,3,16,3/5 16/3,1-3/5cos,16,5-3cos,例 6 通过抛物线y2=8x的焦点F,作一条倾斜 角为/4的直线,交抛物线于A、B两点,求 焦点弦|AB|的值。 分析:可用以往学过 的方法求焦点弦的长。 也可建立极坐标系解决。 点

5、F为极点,x轴正半轴 为极轴,它的极坐标方程为 = ,1= ,2= |AB|= 1 + 2=16,o F x,A,B,y,4,1-cos,1,2,4,1-cos/4,4,1-cos5/4,P52 53 极坐标和直角坐标的互化 以直角坐标系xoy的 原点为极点,x轴的正方 向为极轴,点M的直角 坐标为(x,y),它的极 坐标为(,根据三角 函数定义,同一点M的两种坐标有下面关系 x= cos , y=sin , 2=x2+y2 ,tg = (x=0) 一般,根据M所在象限 ,取最小的正角。,o,x,y,M,),y,x,公式的应用 例 把点M的极坐标(-5,)化成直角坐标 直接代入公式计算 x=c

6、os= -5cos/6 =(-5/2)3 y=sin = -5sin/6= - 5/2 点M的直角坐标是(- ,- ) 例 把点M的直角坐标(-3,-1)化为极坐标 极径取正值 =2 极角 : tg = ,= ,6,),M,o,x,y,53,5,2,2,o,x,y,M,3,3,7,6,同一条曲线在两个不同坐标系中方程的互化 P54 例 3 化圆的直角坐标方程x2+y2-2ax=0为 极坐标方程。 解题时,应用公式,注意整体替代。把 x2+y2=2,x=cos代入直角坐标方程得 2-2acos = 0(-2acos)=0 所示的极坐标方程是=0或-2acos =0 =0 是极点, =2acos

7、表示以(a,0)为圆心,a为 半径,且过极点的圆,所以 =0不必写出来。,o,x,(a,0),例 5 化=-4sin+cos 为直角坐标方程 解题注意整体替代。 把原极坐标方程两边同乘 2 =-4 sin + cos , 2 =x2+y2 , cos = x, sin = y,它的直角坐标方程 是x2+y2=-4y+x (x- )2+(y+2)2= 在直角坐标系xoy中 方程表示的是以(,-2)为 圆心 ,为半径的圆。,1,2,4,17,o,x,y,1,2,2,14,把极坐标方程2sin2 =2tg化为直角坐标方程 解:把原方程化为sin cos = tg x= cos ,y= sin , = tg 它的直角坐标方程是 xy= y(x2-1)=0 y (x-1) (x+1)= 0 从极坐标方程直接看不出方程表示的曲线 是什么,化为直角坐标方程后知道它表示的 是三条直线:y=0或x=1或x=-1,x,y,y,x,P54 例 4 化圆锥曲线的极坐标方程= 为直角坐标方程。 解:把原极坐标方程化为 -ecos=ep =e cos +p), = x2+y2 , x = cos x2+y2=e(x+p),两边平方得 x2+y2=e2(x2+2px+p2),整理,所求的直角坐 标方程是(1-e2)x2+y2-2pe2x-e2p2=0,ep,1-ecos,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁