《对坐标的曲面积分.ppt》由会员分享,可在线阅读,更多相关《对坐标的曲面积分.ppt(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、对坐标的曲面积分,一、基本概念,观察以下曲面的侧 (假设曲面是光滑的),曲面分上侧和下侧,曲面分内侧和外侧,曲面的分类:,1.双侧曲面;,2.单侧曲面.,典型双侧曲面,典型单侧曲面:,莫比乌斯带,曲面法向量的指向决定曲面的侧.,决定了侧的曲面称为有向曲面.,曲面的投影问题:,类似地可定义,二、概念的引入,实例: 流向曲面一侧的流量.,1. 分割,则该点流速为 .,法向量为 .,2. 求和,3.取极限,三、概念及性质,积分曲面,被积函数,有向面积元,类似可定义,存在条件:,组合形式:,物理意义:,性质:,由定义可知对坐标的曲面积分具有与 对坐标的曲线积分相类似的性质,1。 可加性,2 。 反向性
2、,四、对坐标的曲面积分的计算法,注意:对坐标的曲面积分,必须注意曲面所取的侧.,这就是把对坐标的曲面积分化成二重积分的计算公式,概括为:,代:将曲面的方程表示为二元显函数,然后代入 被积函数,将其化成二元函数,投:将积分曲面投影到与有向面积元素(如dxdy) 中两个变量同名的坐标面上(如xoy 面),定号: 由曲面的方向,即曲面的侧确定二重积分 的正负号,一代、二投、三定号,注,积分曲面的方程必须表示为单值显函数 否则分片计算,结果相加,确定正负号的原则: 曲面取上侧、前侧、右侧时为正 曲面取下侧、后侧、左侧时为负,例1 计算,所截得的在第一卦限的部分的前侧,解,解,例2,例3 计算,平面 x
3、 = 0 , y = 0 , z = 0 , x + y + z = 1 所围成的 空间区域的整个边界曲面的外侧,o,x,y,z,解,分成四个部分,左侧,下侧,后侧,上侧,同理,同理,注,对坐标的曲面积分的对称性,被积表达式具有轮换对称性,即将被积 表达式中的所有字母按,x,y,z,顺序代换后原式不变,积分曲面及其侧具有对称性,这是指曲面 在各坐标面上的投影区域均相同,且配给 的符号也相同,五、两类曲面积分之间的联系,两类曲面积分之间的联系,向量形式,例4,解,注,此例的解法具有普遍性,六、小结,1、物理意义,2、计算时应注意以下两点,思考题,思考题解答,此时 的左侧为负侧,,而 的左侧为正侧.,练 习 题,练习题答案,