《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数同步训练试题(精选).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数同步训练试题(精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若tanA=2,则A的度数估计在( )A在0和30之间B在30 和45之间C在45和60之间D在60和9
2、0之间2、式子sin45+sin602tan45的值是()A22BC2D23、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m4、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD5、如图所示,点C是O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函数图象所提供的信息,AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A150,B150,2C120,D120,2
3、6、如图,在RtABC中,ABC90,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD7、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形8、如图,等边三角形ABC和正方形ADEF都内接于O,则AD:AB()ABCD9、如图,小王在高台上的点A处测得塔底点C的俯角为,塔顶点D的仰角为,已知塔的水平距离ABa,则此时塔高CD的长为()Aasin+asin Batan+atan CD10、如图,河坝横断面迎水坡的坡比为:,坝高m,则的长度为( )A6mBmC9mDm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,
4、正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_2、如图,在RtABC中,C90,AC2,BC2以点A为圆心,AC长为半径作弧交AB于点D,再以点B为圆心,BD长为半径作弧交BC于点E,则图中阴影部分的面积为_3、如图,直线MN过正方形ABCD的顶点A,且NAD30,AB2,P为直线MN上的动点,连BP,将BP绕B点顺时针旋转60至BQ,连CQ,CQ的最小值是 _4、如图,点A、B、C都在格点上,则CAB的正切值为_5、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q
5、,现给出下列结论:;其中正确的结论有_(填入正确的序号)三、解答题(5小题,每小题10分,共计50分)1、如图1所示的是一辆混凝土布料机的实物图,图2是其工作时部分示意图,AC是可以伸缩的布料臂,其转动点A离地面BD的高度AH为3.2米当布料臂AC长度为8米,张角为时,求布料口C离地面的高度(结果保留一位小数;参考数据:,)2、已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3),现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,速度为每秒1个单位长度,点Q沿折线CBA向终点A运动,速度为每秒2个单位长度,设运动时间为t秒(1)求AD,BC之间的
6、距离和sinDAB的值;(2)设四边形CDPQ的面积为S求S关于t的函数关系式及自变量t的取值范围;(3)若存在某一时刻,点P,Q同时在反比例函数的图象上,直接写出此时四边形CDPQ的面积S的值3、如图1,在中,(1)求的长;(2)如图2,点P沿线段从B点向C点以每秒的速度运动,同时点Q沿线段向A点以每秒的速度运动,且当P点停止运动时,另一点Q也随之停止运动,若P点运动时间为t秒若时,求证:;并求此时t的值点P沿线段从B点向C点运动过程中,是否存在t的值,使的面积最大;若存在,请求出t的值;若不存在,请说明理由4、(1)计算: ;(2)先化简,再求值:,其中a满足5、计算:-参考答案-一、单选
7、题1、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.2、B【分析】先分别求解特殊角的三角函数值,再代入运算式进行计算即可.【详解】解:sin45+sin602tan45 故选B【点睛】本题考查的是特殊角的三角函数值的混合运算,正确的记忆特殊角的三角函数值是解本题的关键.3、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用能力
8、4、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90,由翻折变换的性质得,CD=CD=4,C=C=90,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边5、D【分析】观察图象可得:y的最大值为4,即BC的最大值为4,当x0时,y2,即AB2,如图,点C是的中点,连接OC交AB于点D,则OCAB,ADBD,AOB2BOC,利用三角函数定义可得BOC60,即可求得答案【详解】解:由函数图象可得:y的最大值为4,即BC的最大值为4,O的直径为4,OAOB2,观察图象,可得当x0时,y2,AB2
9、,如图,点C是的中点,连接OC交AB于点D,OCAB,ADBD,AOB2BOC,sinBOC,BOC60,AOB120,OBOC,BOC60,BOC是等边三角形,BCOB2,即点C运动到弧AB的中点时所对应的函数值为2故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键6、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90,C+DBC=90,A=DBC,在RtABC中,ta
10、nA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直角三角形中的应用是解题关键7、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解8、B【分
11、析】过点O作,设圆的半径为r,根据垂径定理可得OBM与ODN是直角三角形,根据三角函数值进行求解即可得到结果【详解】如图,过点O作,设圆的半径为r,OBM与ODN是直角三角形,等边三角形ABC和正方形ADEF都内接于,,,故选B【点睛】本题主要考查了圆的垂径定理知识点应用,结合等边三角形和正方形的性质,利用三角函数求解是解题的关键9、B【分析】根据直角三角形锐角三角函数即可求解【详解】解:在中,在中,故选:B【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是掌握直角三角形锐角三角函数10、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比
12、为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键二、填空题1、【解析】【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解】解:正六边形ABCDEF的边长为2, =120,ABC+BAC+BCA=180,BAC=(180-ABC)=(180-120)=30,过B作BHAC于H
13、,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键2、【解析】【分析】根据特殊角的三角函数值,求出B和A的度数,再根据三角形的面积公式和扇形的面积公式分别求出ACB和扇形ACD、扇形BDE的面积,最后求出答案即可【详解】解:ACB90,AC2,BC2,由勾股定理得:AB=4,B30,A60,由题意,AC=AD=2,则BD=AB-AD=2,阴影部分的
14、面积SSABCS扇形ACDS扇形BDE,故答案为:【点睛】本题考查根据特殊角的三角函数值求角度,以及扇形面积相关计算问题,掌握特殊角的三角函数值,以及扇形的面积计算公式是解题关键3、#【解析】【分析】如图,连接交于 则 先证明 把绕顺时针旋转得到 证明 可得三点共线,在上运动,过作于 则重合时,最短,再求解 从而可得答案.【详解】解:如图,连接PQ交于 则 是等边三角形, 正方形 把绕顺时针旋转得到 则 三点共线, 在上运动,过作于 则重合时,最短, 是等边三角形,记交于 所以CQ的最小值是,故答案为:【点睛】本题考查的是正方形的性质,相似三角形的性质,锐角三角函数的应用,得到的运动轨迹是解本
15、题的关键.4、#0.5【解析】【分析】过作垂直于的延长线于点,则为直角三角形,解直角三角形即可求解【详解】如图:过作垂直于的延长线于点,为直角三角形在中故答案为:【点睛】本题考查的是解直角三角形,解题关键是结合网格的特点构造直角三角形,利用锐角三角形函数解答5、【解析】【分析】由“ASA”可证ANODFO,可得ON=OF,由等腰三角形的性质可求AFO=45;由外角的性质可求NAO=AQO由“AAS”可证OKGDFG,可得GO=DG;通过证明AHNOHA,可得,进而可得结论DP2=NHOH【详解】四边形ABCD是正方形,AO=DO=CO=BO,ACBD,AOD=NOF=90,AON=DOF,OA
16、D+ADO=90=OAF+DAF+ADO,DFAE,DAF+ADF=90=DAF+ADO+ODF,OAF=ODF,ANODFO (ASA),ON=OF,AFO=45,故正确;如图,过点O作OKAE于K,CE=2DE,AD=3DE,tanDAE=DEAD=DFAF=13,AF=3DF,ANODFO,AN=DF,NF=2DF,ON=OF,NOF=90,OK=KN=KF=FN,DF=OK,又OGK=DGF,OKG=DFG=90,OKGDFG (AAS),GO=DG,故正确;DAO=ODC=45,OA=OD,AOH=DOP,AOHODOP (ASA),AH=DP,ANH=FNO=45=HAO,AHN=
17、AHO,AHNOHA,AHHO=HNAH,AH2=HOHN,DP2=NHOH,故正确;NAO+AON=ANQ=45,AQO+AON=BAO=45,NAO=AQO,即Q=OAG故错误综上,正确的是故答案为:【点睛】本题是四边形综合题,查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质解决问题是解题的关键三、解答题1、高度为7.0米【解析】【分析】过点C作于点E,过点A作于点F,根据矩形的判定定理可得四边形AHEF为矩形,由图中角的关系可得,在中,利用正弦三角函数可得,根据图形中即可得【详解】解:如图,过点C作于点E,过点A作于点F,
18、四边形AHEF为矩形,.在中,答:布料口C离地面的高度为7.0米【点睛】题目主要考查矩形的判定和性质,锐角三角函数解三角形等,理解题意,作出相应辅助线是解题关键2、(1)4.8;(2),;,;(3)16【解析】【分析】(1)过点B作,由已知可得,再根据菱形的性质得到,得到,得到即可得;(2)当时,可得,则,根据梯形面积表示即可;当时,过点Q作,并反向延长交BC于点M,根据面积表示即可;(3)首先根据题意求得t的值,然后代入(2)中的式子计算即可;【详解】解:(1)过点B作,C,D两点的坐标分别为(4,0),(0,3),四边形ABCD是菱形,则,;(2)如图,当时,依据题意可得,则,;当时,过点
19、Q作,并反向延长交BC于点M,根据题意得,则,;(3)点P,Q同时在反比例函数的图象上,则需P,Q分别位于第二、四象限,此时,则,则,点P的横坐标为:,纵坐标为:,点P的坐标为,同理可求,点,解得:或(舍去),【点睛】此题考查了反比例函数的性质、菱形的性质、勾股定理、三角函数等知识此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用3、(1)AB=13;(2)证明见解析,t=354;存在,t=6【解析】【分析】(1)过A点作BC的垂线,垂足为D,则可求得AD=5,再由勾股定理可得AB长度(2)由APC=APQ+QPC=BAP+ABC,可得QPC=BAP,则可证
20、得,可求得BP以及QC的长度,根据题意列一元一次方程即可过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂足为H,根据题意列方程即可【详解】(1)过A点作BC的垂线,垂足为D在RtABD中,ADBD=tanABC=512,BC=24BD=12BC=12AD=12512=5由勾股定理有AB=BD2+AD2AB=122+52=144+25=169=13(2)APC=APQ+QPC=BAP+ABCQPC=BAP又ABC=ACBABBP=PCQC设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t则132t=24-2tt解得t=354过A点作BC的垂线,垂足为D,过Q点作BC垂线,垂
21、足为H,设运动了t秒,则BP=2t,PC=24-2t,AQ=13-t,QC=t,ABC=ACBcosABC=cosACB在RtABD中AB=13,AD=5cosABC=cosACB=513QH=513t当2t=24时运动停止,即0t12sSPQC=12PCQHSPQC=12PC513QCSPQC=12(24-2t)513tSPQC=-513t2+6013t对称轴为t=-b2a=-60132513=6SPQC=-513t2+6013t开口朝下,612,当t=6时面积最大【点睛】本题考查了解直角三角形、勾股定理、一元一次方程的几何动点问题,根据题意列一元一次方程是解题的关键4、(1)0,(2),【解析】【分析】(1)先求特殊角三角函数值,再根据二次根式运算法则计算即可;(2)先运用分式运算法则进行化简,再解方程代入求值即可【详解】解:(1)=0(2)=解方程得,当时,分式无意义,把代入,原式=【点睛】本题考查了特殊角三角函数值和二次根式运算,分式化简求值,解题关键是熟练运用相关法则进行计算,熟记三角函数值5、-1【解析】【分析】由题意根据乘方、立方根和负指数幂的运算法则以及运用特殊三角函数值和根式的运算进行计算即可.【详解】解:【点睛】本题考查含特殊锐角三角函数值的实数运算,熟练掌握乘方、立方根和负指数幂的运算法则以及熟记特殊三角函数值和根式的运算法则是解题的关键.