《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数专项训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年人教版九年级数学下册第二十八章-锐角三角函数专项训练试题(含解析).docx(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、式子sin45+sin602tan45的值是()A22BC2D22、如图,河坝横断面迎水坡的坡比为:,坝
2、高m,则的长度为( )A6mBmC9mDm3、如图,ABC的顶点在正方形网格的格点上,则cosACB的值为( )ABCD4、如图,在RtABC中,ABC90,BD是AC边上的高,则下列选项中不能表示tanA的是()ABCD5、如图,在平面直角坐标系中,直线与轴交于点C,与反比例函数在第一象限内的图象交于点B,连接BO,若,则的值是( )A-20B20C5D56、如图,在平面直角坐标系系中,直线与轴交于点,与轴交于点,与反比例函数在第一象限内的图象交于点,连接若,则的值是( )ABCD7、如图所示,点C是O上一动点,它从点A开始逆时针旋转一周又回到点A,点C所走过的路程为x,BC的长为y,根据函
3、数图象所提供的信息,AOB的度数和点C运动到弧AB的中点时所对应的函数值分别是()A150,B150,2C120,D120,28、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里9、如图,为测量一幢大楼的高度,在地面上与楼底点相距30米的点处,测得楼顶点的仰角,则这幢大楼的高度为( )A米B米C米D米10、某山坡坡面的坡度,小刚沿此山坡向上前进了米,小刚上升了( )A米B米C米D米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在以AB为直径的半圆O中,C
4、是半圆的三等分点,点P是弧BC上一动点,连接CP,AP,作OM垂直CP交AP于N,连接BN,若AB12,则NB的最小值是_2、如图,在中,以为边向外作等边,则的长为_3、第6号台风“烟花”于2021年7月25日12时30分前后登陆舟山普陀区,登陆时强度为台风级,中心最大风速38米/秒此时一艘船以27nmile/h的速度向正北航行,在A处看烟花S在船的北偏东15方向,航行40分钟后到达B处,在B处看烟花S在船的北偏东45方向(1)此时A到B的距离是 _;(2)该船航行过程中距离烟花S中心的最近距离为 _(提示:sin15)4、如图,在ABC中,C90,BD平分ABC交AC于点D,DEAB于点E,
5、AE6,cosA(1)CD_;(2)tanDBC_5、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60) ,sin75,三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,过点B作于E,连结AE,F为AE上一点,且(1)求证:(2)BF的长为_2、在O中,四边形ABCD是平行四边形(1)求证:BA是O的切线;(2)若AB6,求O的半径;求图中阴影部分的面积3、为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地A和人工智能科技馆C参观学习,如图所示,学校在B处,A位于学校的东北方向,C位于学校南偏东30方向,C在A的南偏西15方向(32
6、32)km处,学生分成两组,第一组前往A地,第二组前往C地,两组同学同时从学校出发,第一组乘客车,速度是40km/h,第二组乘公交车,速度是32km/h,哪组学生先到达目的地?请说明理由(结果保留根号)4、6tan230sin602tan455、如图,矩形的两边在坐标轴上,点A的坐标为,抛物线过点B,C两点,且与x轴的一个交点为,点P是线段CB上的动点,设()(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作,交抛物线于点E,连接BE,当t为何值时,和中的一个角相等?(3)点Q是x轴上的动点,过点P作PMBQ,交CQ于点M,作PNCQ,交BQ于点N,当四边形为正方形时,求t的值-
7、参考答案-一、单选题1、B【分析】先分别求解特殊角的三角函数值,再代入运算式进行计算即可.【详解】解:sin45+sin602tan45 故选B【点睛】本题考查的是特殊角的三角函数值的混合运算,正确的记忆特殊角的三角函数值是解本题的关键.2、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键3、D【分析】根据图形得出AD的长,进而利用三角函数解答即可【详解】解:过A作ADBC于D,DC=1,AD=3,AC=,cosACB=,故选:D【点
8、睛】本题主要考查了解直角三角形,解题的关键是掌握勾股定理逆定理及余弦函数的定义4、D【分析】根据题意可推出ABC、ADB、BDC均为直角三角形,再在三个直角三角形中分别表示出tanA即可【详解】解:在RtABC中,ABC=90,BD是AC边上的高,ABC、ADB、BDC均为直角三角形,又A+C=90,C+DBC=90,A=DBC,在RtABC中,tanA=,故A选项不符合题意;在RtABD中,tanA=,故B选项不符合题意;在RtBDC中,tanA=tanDBC=,故D选项不符合题意;选项D表示的是sinC,故D选项符合题意;故选D【点睛】本题考查解直角三角形相关知识,熟练掌握锐角三角函数在直
9、角三角形中的应用是解题关键5、D【分析】先根据直线解析式求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,利用待定系数法将点B坐标代入即可求得结论【详解】解:直线y=k1x+4与x轴交于点A,与y轴交于点C,点C的坐标为(0,4),OC=4,过B作BDy轴于D,SOBC=2,BD=1,tanBOC=,OD=5,点B的坐标为(1,5),反比例函数在第一象限内的图象交于点B,k2=15=5故选:D【点睛】本题考查了反比例函数与一次函数的交点坐标,锐角三角函数,三角形面积,待定系数法求分别列函数解析式,解题的关键是作辅助线构造直角三角形6、B【
10、分析】首先根据直线求得点C的坐标,然后根据BOC的面积求得BD的长,然后利用正切函数的定义求得OD的长,从而求得点B的坐标,求得结论【详解】解:直线yk1x+2与x轴交于点A,与y轴交于点C,点C的坐标为(0,2),OC2,SOBC1,BD1,tanBOC,OD3,点B的坐标为(1,3),反比例函数y在第一象限内的图象交于点B,k2133故答案为:B【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是仔细审题,能够求得点B的坐标7、D【分析】观察图象可得:y的最大值为4,即BC的最大值为4,当x0时,y2,即AB2,如图,点C是的中点,连接OC交AB于点D,则OCAB,ADBD,AO
11、B2BOC,利用三角函数定义可得BOC60,即可求得答案【详解】解:由函数图象可得:y的最大值为4,即BC的最大值为4,O的直径为4,OAOB2,观察图象,可得当x0时,y2,AB2,如图,点C是的中点,连接OC交AB于点D,OCAB,ADBD,AOB2BOC,sinBOC,BOC60,AOB120,OBOC,BOC60,BOC是等边三角形,BCOB2,即点C运动到弧AB的中点时所对应的函数值为2故选:D【点睛】本题主要考查了垂径定理,锐角三角函数,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键8、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过
12、点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键9、C【分析】利用在RtABO中,tanBAO即可解决【详解】:解:如图,在RtABO中,AOB90,A65,AO30m,tan65,BO30tan65米故选:C【点睛】本题考查解直角三角形的应用,解题的关键是熟知正切函数为对边比邻边10、B【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设小刚上升了米,则水平前进了米根据勾股定理可得:
13、解得即此时该小车离水平面的垂直高度为50米故选:B【点睛】考查了解直角三角形的应用坡度坡角问题和勾股定理,熟悉且会灵活应用公式:坡度垂直高度水平宽度是解题的关键二、填空题1、221-23#-23+221【解析】【分析】如图,连接AC,OC证明点N在T上,运动轨迹是OC ,过点T作THAB于H求出BT,TN,可得结论【详解】解:如图,连接AC,OCC是半圆的三等分点,AOC60,OAOC,AOC是等边三角形,作AOC的外接圆T,连接TATC,TN,TBOMPC,CMPM,NCNP,NPCNCPAOC30,CNM60,CNO120,CNOOAC180,点N在T上,运动轨迹是OC,过点T作THAB于
14、H在RtATH中,AHOH3,TAH30,THAHtan30,ATTN2HN2,在RtBHT中,BTTH2+BH2=32+92=221,BNBTTN,BN221-23,BN的最小值为221-23故答案为:221-23【点睛】本题考查点与圆的位置关系,等边三角形的判定和性质,解直角三角形,轨迹等知识,解题的关键是正确寻找点N的运动轨迹,属于中考填空题中的压轴题2、【解析】【分析】将线段绕点顺时针旋转得到线段,连接,作交的延长线于点,证明,可得,再分别求解,从而利用勾股定理可得答案.【详解】解:将线段绕点顺时针旋转得到线段,连接,作交的延长线于点是等边三角形,是等边三角形, , ,在中,故答案为【
15、点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,旋转的性质,勾股定理的应用,锐角三角函数的应用,作出适当的辅助线构建全等三角形与直角三角形是解本题的关键.3、 18 nmile nmile# nmile【解析】【分析】如图,过作于 先由路程等于速度乘以时间求解 再利用sin15求解 再设 而 再利用建立方程,再解方程,从而可得答案.【详解】解:如图,过作于 由题意可得: 设 则 设 而 解得: 经检验符合题意;所以:该船航行过程中距离烟花S中心的最近距离为: nmile.故答案为:18 nmile, nmile.【点睛】本题考查的是解直角三角形的实际应用,熟练的利用的值求解是
16、解本题的关键.4、 8 【解析】【分析】(1)在RtADE中,根据余弦函数的定义求出AD,利用勾股定理求出DE,再由角平分线的性质可得DC=DE=8;(2)由AD=10,DC=8,得AC=AD+DC=18由A=A,AED=ACB,可知ADEABC,由相似三角形对应边成比例可求出BC的长,根据三角函数的定义可求出tanDBC=【详解】解:(1)在RtADE中,AED=90,AE=6,cosA=,AD=AEcosA=10,DE=102-62=8BD平分ABC,DEAB,DCBC,CD=DE=8;故答案为:8;(2)由(1)AD=10,DC=8,AC=AD+DC=18,在ADE与ABC中,A=A,A
17、ED=ACB,ADEABC,DEBC=AEAC,即8BC=618,BC=24,tanDBC=CDBC=824=13故答案为:【点睛】本题考查了解直角三角形,角平分线的性质、相似三角形的判定与性质,三角函数的定义,求出DE是解第(1)小题的关键;求出BC是解第(2)小题的关键5、【解析】【分析】根据规定运算法则可得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键三、解答题1、(1)见解
18、析;(2)【解析】【分析】(1)可通过证明,证得ABFEAD;(2)根据平行线的性质得到BEAB,根据三角函数的定义得到sinAEB=,根据相似三角形的性质即可得到结论【详解】(1)在平行四边形ABCD中,ABCD,ADBC,(2)解:BECD,ABCD,BEABABE=90在RtABE中,sinAEB=,由(1)知,ABFEAD,AD=3,BF=【点睛】本题考查了相似三角形的判定和性质,同时也用到了平行四边形的性质和等角的补角相等等知识点2、(1)证明见解析;(2),【解析】【分析】(1)连接AO,由,四边形ABCD是平行四边形,即得推得为等边三角形,即可得BAO=BAC+CAO=90,即B
19、A是O的切线(2)由(1)有A0=将阴影面积拆为相等的两部分,其中左侧部分为扇形ACO面积减去三角形ACO面积,由扇形面积公式,等边三角形面积公式计算后乘2即可【详解】(1)证明:连接OA四边形ABCD是平行四边形AD/BEADC=DCO又ACD=ADCACO=ACD +DCO=2ADC又2ADC=AO=AC又OC=AO为等边三角形ACO=CAO=60,ACD =DCO=30又AB/CDBAC=ACD=30BAO=BAC+CAO=30+60=90BA是O的切线(2)由(1)可知BAO=90,BOA=60AO=连接AO,与CD交于点MAC=,OAC=60CM=AO=,AOC=60【点睛】本题是一
20、道圆内的综合问题,考察了证明某线是切线、平行四边形性质、等弧的性质、解直角三角形、等边三角形性质、勾股定理、扇形面积公式等,需熟练掌握这些性质及定理,而作出正确的辅助线是解题的关键3、第二组,见解析【解析】【分析】过点B作BDAC于D,在RtBCD中证得BDCD,设BDx,则CDx,在RtABD中,BAC30,利用三角函数定义表示出AD的长,在RtBDC中,利用三角函数表示出CD的长,由AD+CDAC列出方程问题得解【详解】解:如图,过点B作BDAC于D 依题意得,BAE45,ABC105,CAE15,BAC30,ACB45在RtBCD中,BDC90,ACB45,CBD45,CBDDCB,BD
21、CD,设BDx,则CDx,在RtABD中,BAC30,AB2BD2x,tan30,ADx,在RtBDC中,BDC90,DCB45,sinDCB,BCx,CD+AD32+32,x+,x32,AB2x64,BC,第一组用时:64401.6(h);第二组用时:32(h),1.6,第二组先到达目的地,答:第一组用时1.6小时,第二组用时小时,第二组先到达目的地【点睛】本题考查解直角三角形的应用,方位角的计算,勾股定理,一元一次方程,解题的关键是学会添加常用辅助线面构造直角三角形解决问题4、【解析】【分析】将,代入式子计算即可【详解】解:,原式,【点睛】题目主要考查特殊角三角函数的混合运算,熟记特殊角的
22、三角函数值是解题关键5、(1)C(0,4),B(10,4),抛物线解析式为yx2x4;(2)t3时,PBEOCD;(3)t的值为或【解析】【分析】(1)由抛物线的解析式可求得C点坐标,由矩形的性质可求得B点坐标,由B、D的坐标,利用待定系数法可求得抛物线解析式;(2)可设P(t,4),则可表示出E点坐标,从而可表示出PB、PE的长,由条件可证得PBEOCD,利用相似三角形的性质可得到关于t的方程,可求得t的值;(3)当四边形PMQN为正方形时,则可证得COQQAB,利用相似三角形的性质可求得CQ的长,在RtBCQ中根据勾股定理可求得BQ、CQ,利用三角函数可用t分别表示出PM和PN,可得到关于
23、t的方程,可求得t的值【详解】解:(1)在yax2bx4中,令x0可得y4,C(0,4),四边形OABC为矩形,且A(10,0),B(10,4),把B、D坐标代入抛物线解析式可得,解得,抛物线解析式为yx2x4;(2)点P在BC上,可设P(t,4),点E在抛物线上,E(t,t2t4),PB10t,PEt2t44t2t,BPECOD90,当PBEOCD时,则PBEOCD,即BPODCOPE,2(10t)4(t2t),解得t3或t10(不合题意,舍去),当t3时,PBEOCD; 当PBECDO时,则PBEODC,即BPOCDOPE,4(10t)2(t2t),解得t12或t10(均不合题意,舍去)综
24、上所述当t3时,PBEOCD;(3)当四边形PMQN为正方形时,则PMCPNBCQB90,PMPN,CQOAQB90,CQOOCQ90,OCQAQB,COQ=QAB=90COQQAB,即OQAQCOAB,设OQm,则AQ10m,m(10m)44,整理得,解得m2或m8,当m2时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),解得t,当m8时,CQ,BQ,sinBCQ,sinCBQ,PMPCsinPCQt,PNPBsinCBQ(10t),t (10t),可求得t,当四边形PMQN为正方形时,t的值为或【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识在(1)中注意利用矩形的性质求得B点坐标是解题的关键,在(2)中证得PBEOCD是解题的关键,在(3)中利用RtCOQRtQAB求得CQ的长是解题的关键本题考查知识点较多,综合性较强,难度较大