《2022年人教版初中数学七年级下册-第六章实数专题训练练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册-第六章实数专题训练练习题(含详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册 第六章实数专题训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列四个实数中,为无理数的是( )A0BCD2、的算术平方根是( )ABCD3、下列说法中正确的有()2都是8的立方根 x的平方根是3 2A1个B2个C3个D4个4、下列各数中,是无理数的是()ABCD3.14155、在下列各数:、0.2、0.101001中有理数的个数是( )A1B2C3D46、在0,3,6.1010010001(相邻两个1之间0的个数在递增)中,无理数有()A1个B2个C3个D4个7、下
2、列说法正确的是()A是分数B0.1919919991(每相邻两个1之间9的个数逐次加1)是有理数C3x2y+4x1是三次三项式,常数项是1D单项式的次数是2,系数为8、下列说法正确的是( )A2B27的立方根是3 C9的平方根是3 D9的平方根是39、实数2的倒数是()A2B2CD10、在实数,0.1010010001(相邻两个1中间依次多1个0)中,无理数有( )A2个B3个C4个D5个二、填空题(5小题,每小题4分,共计20分)1、设x)表示大于x的最小整数,如3)4,1.2)1,(1)3.9)_(2)下列结论中正确的是_(填写所有正确结论的序号)0)0;x)x的最小值是0;x)x的最大值
3、是1;存在实数x,使x)x0.5成立2、的平方根是_3、若一个正数的两个平方根分别为,则_ ,这个正数是_4、一个正方形的面积为5,则它的边长为_5、如果一个数的平方等于16,那么这个数是_三、解答题(5小题,每小题10分,共计50分)1、计算:2、计算:(1)(2)3、求下列各式中x的值(1)3x 2 =27(2)(x+1)3-3= -674、计算:(1);(2)5、任何实数a,可用a表示不超过a的最大整数,如4=4,=1现对72进行如下操作:72第一次=8,第二次=2,第三次=1,这样对72只需进行3次操作变为1(1)对10进行1次操作后变为_,对200进行3次作后变为_;(2)对实数m恰
4、进行2次操作后变成1,则m最小可以取到_;(3)若正整数m进行3次操作后变为1,求m的最大值-参考答案-一、单选题1、B【分析】根据无理数的定义:“无限不循环的小数是无理数”,逐项分析判断即可【详解】A. 0是有理数,故该选项不符合题意;B. 是无理数,故该选项符合题意; C. 是有理数,故该选项不符合题意;D. 是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数2、A【分析】根据算术平方根的定义即可完成【详解】 的算术平方根是 即 故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键3、
5、B【分析】根据平方根和立方根的定义进行判断即可【详解】解:2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;,9的平方根是3,原说法错误;=2,正确;综上,正确的有共2个,故选:B【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键4、A【分析】根据有理数和无理数的概念进行判断即可选出正确答案【详解】解:A、是无理数,故本选项符合题意;B、,是整数,属于有理数,故本选项不合题意;C、是分数,属于有理数,故本选项不合题意;D、3.1415是有限小数,属于有理数,故本选项不合题意;故选:A【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数
6、为无理数如,0.8080080008(每两个8之间依次多1个0)等形式5、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解【详解】解:,在、0.2、-、0.101001中,有理数有0.2、0.101001,共有4个故选:D【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提6、C【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:在0,6.1010010001(相邻两个1之间一次多一个0)中,无理数有,+6.10
7、10010001(相邻两个1之间一次多一个0)故选C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数7、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、3x2y+4x1是三次三项式,常数项是-1,故此选项不符合题意;D、单项式的次数是2,系数为,故此选项符合题意;故选D【点睛】本题主要考查了有理
8、数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数8、D【分析】根据平方根、立方根和算术平方根的性质计算即可;【详解】2,故A错误;27的立方根是3,故B错误;9的平方根是3,故C错误;9的平方根是3,故D正确;故选D【点睛】本题主要考查了平方根的性质,立方根的性质和算术平方根的性质,准确计算是解题的
9、关键9、D【分析】根据倒数的定义即可求解【详解】解:-2的倒数是故选:D【点睛】本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键10、D【分析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】解:是有理数,是无限循环小数,是有理数,是分数,是有理数,0.1010010001(相邻两个1中间依次多1个0)是无理数,共个,故选:D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010
10、001,等有这样规律的数二、填空题1、-3; 或【解析】【分析】(1)利用题中的新定义判断即可(2)根据题意x)表示大于x的最小整数,结合各项进行判断即可得出答案【详解】(1)表示大于-3.9的最小整数为-3,所以3.9)-3(2)解: 0)=1,故本项错误; x)x0,但是取不到0,故本项错误; x)x1,即最大值为1,故本项正确; 存在实数x,使x)x=0.5成立,例如x=0.5时,故本项正确正确的选项是:;故答案为:【点睛】此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键2、【解析】【分析】直接根据平方根的定义求解即可【详解】解:的平方根为=故答案为:【点睛】本题主要考查了平
11、方根,知道一个正数有两个平方根是解决本题的关键3、 #-0.25 【解析】【分析】根据平方根的性质,可得 ,从而得到 ,即可求解【详解】解:一个正数的两个平方根分别为, ,解得: ,这个正数为 故答案为: ;【点睛】本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数是解题的关键4、【解析】【分析】根据正方形面积根式求出边长,即可得出答案【详解】解:边长为: 故答案为【点睛】本题考查了算术平方根,关键是会求一个数的算术平方根5、【解析】【分析】根据平方根的定义进行解答即可【详解】解:如果一个数的平方等于16,那么这个数是故答案为:【点睛】本题考查了平方根和立方根的概念和求法,理解
12、、记忆平方根和立方根的概念是解题关键平方根:如果x2=a,则x叫做a的平方根,记作“”(a称为被开方数)三、解答题1、2【解析】【分析】先分别求解绝对值,算术平方根,乘方运算的结果,再进行加减运算即可.【详解】解:【点睛】本题考查的是求解一个数的绝对值,算术平方根,有理数的乘方运算,掌握以上基本运算的运算法则是解本题的关键.2、(1);(2)【解析】【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可【详解】解:(1)原式;(2)原式【点睛】本题考查了实数的混合运算,算术平方根以及立方根
13、的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键3、(1)x= 3;(2)x=-5【解析】【分析】(1)根据平方根的性质求解即可;(2)根据立方根的性质求解即可【详解】解:(1)解得;(2)解得,【点睛】此题考查了利用平方根和立方根的性质求解方程,解题的关键是掌握平方根和立方根的有关性质4、(1);(2)【解析】【分析】(1)分别进行算术平方根运算和立方根运算,再进行加减运算即可;(2)利用立方根解方程的方法求解即可【详解】(1)原式,;(2),【点睛】本题考查算术平方根、立方根、利用立方根解方程,熟练掌握运算法则,会运用立方根解方程是解答的关键5、(1)3;1;(2);(3)的最大值为255【解析】【详解】解:(1),对10进行1次操作后变为3;同理可得,同理可得,同理可得,对200进行3次作后变为1,故答案为:3;1;(2)设m进行第一次操作后的数为x,要经过两次操作故答案为:(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,要经过3次操作,故是整数的最大值为255【点睛】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键