2022年人教版初中数学七年级下册-第六章实数月度测评练习题(含详解).docx

上传人:可****阿 文档编号:30738635 上传时间:2022-08-06 格式:DOCX 页数:15 大小:256.70KB
返回 下载 相关 举报
2022年人教版初中数学七年级下册-第六章实数月度测评练习题(含详解).docx_第1页
第1页 / 共15页
2022年人教版初中数学七年级下册-第六章实数月度测评练习题(含详解).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2022年人教版初中数学七年级下册-第六章实数月度测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册-第六章实数月度测评练习题(含详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册 第六章实数月度测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、在 0,0.2,3,6.1010010001,中,无理数有( )个A1个B2个C3个D4个2、下列判断:10的平方根是;与互为相反数;0.1的算术平方根是0.01;()3a;a2其中正确的有()A1个B2个C3个D4个3、的相反数是( )ABCD34、在实数,1.12112111211112(每两 个2之间依次多一个1)中,无理数有( )个A2B3C4D55、观察下列算式:212,224,238,2416,

2、2532,2664,27128,28256,根据上述算式中的规律,你认为2810的末位数字是()A2B4C8D66、一个正方体的体积是5m3,则这个正方体的棱长是()AmBmC25mD125m7、下列说法正确的是()A是分数B0.1919919991(每相邻两个1之间9的个数逐次加1)是有理数C3x2y+4x1是三次三项式,常数项是1D单项式的次数是2,系数为8、估计的值在( )A5到6之间B6到7之间C7到8之间D8到9之间9、下列运算正确的是()ABCD10、在下列各数,3.1415926,0,0.2020020002(每两个2之间依次多1个0)中无理数的个数有( )A1个B2个C3个D4

3、个二、填空题(5小题,每小题4分,共计20分)1、如果,那么_2、对于有理数定义一种新运算:,如,则的值为_3、若一个正数的平方根是3x+2和5x-10,则这个数是_4、计算: = _5、的平方根是_,2的绝对值是_,的倒数是_三、解答题(5小题,每小题10分,共计50分)1、已知:的立方根是3,16的算术平方根是,求:(1)、的值;(2)2、实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:3、若的算术平方根是1,3ab1的立方根是2,求2ab的平方根4、我们知道a+b0时,a3+b30也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为

4、相反数,则这两个数也互为相反数(1)试举一个例子来判断上述结论是否成立;(2)若与互为相反数,求6的值5、计算:(1) (2)求x的值:-参考答案-一、单选题1、C【分析】根据无理数的定义“无理数就是无限不循环小数”找出题干中的无理数,即可选择【详解】在这些实数中,无理数为3,6.1010010001,共有3个,故选:C【点睛】本题考查了无理数,理解无理数的定义是解答本题的关键2、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错【详解】解:10的平方根是,正确;是相反数,正确;0.1的算术平方根是,故错误;()3a,正确;a2,故错误;正确的是,有3个故选:C【点睛】本题考查了

5、平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根3、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数【详解】解:的相反数是,故选:A【点睛】此题主要考查相反数,解题的关键是熟知实数的性质4、C【分析】利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数【详解】有理数有:,一共四个无理数有:,1.12112111211112(每两 个2之间依次多一个1),一共四个故选:C【点睛】此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以

6、及像1.12112111211112,等有规律的数5、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6用81042022,余数是2故可知,末尾数是4【详解】2n的个位数字是2,4,8,6循环,所以81042022,则2810的末位数字是4故选:B【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键6、B【分析】根据正方体的体积公式:Va3,把数据代入公式解答【详解】解:5(立方米),答:这个正方体的棱长是米,故选:B【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟

7、记公式7、D【分析】根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可【详解】解:A、是无限不循环小数,不是分数,故此选项不符合题意;B、0.1919919991(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;C、3x2y+4x1是三次三项式,常数项是-1,故此选项不符合题意;D、单项式的次数是2,系数为,故此选项符合题意;故选D【点睛】本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系

8、数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数8、C【分析】将根号部分平方后得44即可看出,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可【详解】,故选:C【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围9、B【分析】依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可【详解】A、,故A错误;B、,故B正确;C,故C错误;D|-2|-2,故D错误故选:B【点睛】本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝

9、对值的性质,熟练掌握相关知识是解题的关键10、B【分析】根据无理数的概念确定无理数即可解答【详解】解:有理数有,3.1415926,0;无理数有,0.2020020002(相邻两个2之间依次多一个0)共2个故选B【点睛】本题主要考查了无理数的定义,无理数主要有以下三种带根号且开不尽方才是无理数,无限不循环小数为无理数,的倍数二、填空题1、【解析】【分析】本题可利用立方根的定义直接求解【详解】,故填:【点睛】本题考查立方根的定义:如果一个数的立方等于a,则这个数称为a的立方根使用时和平方根定义对比记忆2、#【解析】【分析】根据新定义运算的规律,先计算,所得的结果再与(-1)进行“”运算【详解】解

10、:由题意得,故答案为:【点睛】本题考查新定义、有理数的混合运算等知识,是重要考点,掌握相关知识是解题关键3、25【解析】【分析】根据正数的平方根有2个,且互为相反数列出方程,求出方程的解得到的值,即可得到这个正数【详解】解:根据题意得:,解得:,即,则这个数为25,故答案为:25【点睛】本题考查了平方根,熟练掌握平方根的定义是解本题的关键4、#【解析】【分析】根据求一个数的立方根,化简绝对值,求一个数的算术平方根,进行实数的混合运算【详解】解:故答案为:【点睛】本题考查了一个数的立方根,化简绝对值,求一个数的算术平方根,掌握以上知识是解题的关键5、 # #0.5【解析】【分析】根据平方根、绝对

11、值、倒数定义即可求出结果【详解】解:,4的平方根是,的平方根是;2的绝对值是;,2的倒数是,的倒数是故答案为:,【点睛】本题考查了平方根、绝对值和倒数的性质,熟练掌握各自的性质是解本题的关键三、解答题1、(1),;(2)【解析】【分析】(1)根据立方根和算术平方根的意义求出、的值;(2)代入、的值求解即可【详解】解:(1)的立方根是3,16的算术平方根是,解得,;(2)把,代入得,【点睛】本题考查了算术平方根和立方根的意义,会熟练运用算术平方根和立方根求出、的值是解题关键2、【解析】【分析】根据数轴上点的位置可得,然后根据求立方根,绝对值和算术平方根的计算法则进行求解即可【详解】解:由数轴上点

12、的位置可知:,原式【点睛】本题主要考查了实数与数轴,算术平方根,立方根和绝对值,解题的关键在于能够根据数轴上点的位置得到3、【解析】【分析】根据算术平方根的定义列式求出,再根据立方根的定义列式求出,然后代入代数式进行计算即可求得的平方根【详解】的算术平方根是1,的立方根是2,解得:,8的平方根为【点睛】本题考查了立方根的定义,平方根和算术平方根的定义,熟记概念并求出、的值是解题的关键4、(1)成立,理由见详解;(2)0【解析】【分析】(1)用一对互为相反数的数来验证即可,(2)根据(1)的结论,然后互为相反数的两个数相加等于0,求出的值,再计算即可【详解】解:(1),而且,有,结论成立;即“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的(2)由(1)验证的结果知,若与互为相反数,则和也互为相反数,即:,【点睛】本题主要考查了立方根的定义和性质的应用,熟悉相关性质,能根据题中的信息:“若两个数的立方根互为相反数,则这两个数也互为相反数”来解答是解题的关键5、(1)-4+;(2)x=8或-2【解析】【分析】(1)根据算术平方根,绝对值的定义求解即可;(2)整理后利用利用平方根定义开方即可求出解【详解】解:(1);(2)方程整理得:(x-3)2=25,开方得:x-3=5,解得:x=8或-2【点睛】本题考查了实数的运算,以及平方根,解题的关键是掌握平方根的定义

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁