《2021-2022学年基础强化沪科版八年级下册数学期末模拟考试-A卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版八年级下册数学期末模拟考试-A卷(含答案解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在长方形ABCD中,分别按图中方式放入同样大小的直角三角形纸片如
2、果按图方式摆放,刚好放下4个;如果按图方式摆放,刚好放下3个若BC4a,则按图方式摆放时,剩余部分CF的长为( )ABCD2、如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a、b,大正方形边长为3,小正方形边长为1,那么ab的值为( )A3B4C5D63、若0是关于x的一元二次方程mx25xm2m0的一个根,则m等于()A1B0C0或1D无法确定4、在菱形ABCD中,对角线AC、BD相交于点O,AB5,AC
3、6,过点D作AC的平行线交BC的延长线于点E,则BDE的面积为( )A22B24C48D445、下列方程是一元二次方程的是( )ABCD6、若一元二次方程的较小根为,则下面对的值估计正确的是( )ABCD7、如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若DCE128,则A() 线 封 密 内 号学级年名姓 线 封 密 外 A32B42C52D628、估算的值应在( )A和之间B和之间C和之间D和之间9、满足下列条件的三角形中,不是直角三角形的是( )A三内角之比为3:4:5B三边长的平方之比为1:2:3C三边长之比为7:24:25D三内角之比为1:2:310、若一个多边形的
4、内角和为720,则该多边形为( )边形A四B五C六D七第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若在实数范围内有意义,则的取值范围是_2、已知一个n边形的每个外角都是45,那么这个n边形的内角和是 _3、如图,和都是等边三角形,连接AD,BD,BE,下列四个结论中:;,正确的是_(填写所有正确结论的序号)4、如图,已知中,动点M满足,将线段绕点C顺时针旋转得到线段,连接,则的最小值为_5、如图,在正方形ABCD中,AB2,连接AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为 _ 三、解答题(5小题,每小题10分,共计50分)1、用适当
5、的方法解下列方程:(1)(2) 线 封 密 内 号学级年名姓 线 封 密 外 2、已知:在中,的面积为9点为边上动点,过点作,交的延长线于点的平分线交于点(1)如图1,当时,求的长;(2)如图2,当点为的中点时,请猜想并证明:线段、的数量关系3、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形如图1,四边形ABCD中,AB=CD,ABCD,四边形ABCD即为等垂四边形,其中相等的边AB、CD称为腰,另两边AD、BC称为底(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:等垂四边形两个钝角的和为 ;若等垂四边形的两底平行,则它的最小内角为 (2)拓展研究:小坤同
6、学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是 (3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?4、解下列方程:(1);(
7、2)5、某中学初二年级游同学在学习了勾股定理后对九章算术勾股章产生了学习兴趣今天,他学到了勾股章第7题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽问索长几何?”本题大意是:如图,木柱,绳索AC比木柱AB长三尺,BC的长度为8尺,求:绳索AC的长度-参考答案-一、单选题1、A【分析】由题意得出图中,BE=a,图中,BE=a,由勾股定理求出小直角三角形的斜边长为a,进而得出答案【详解】解:BC=4a, 线 封 密 内 号学级年名姓 线 封 密 外 图中,BE=a,图中,BE=a,小直角三角形的斜边长为,图中纸盒底部剩余部分CF的长为4a-2a=a;故选:A【点睛】本题考查了矩形的性质
8、以及勾股定理;熟练掌握矩形的性质和勾股定理是解题的关键2、B【分析】根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值【详解】解:大正方形边长为3,小正方形边长为1,大正方形的面积是9,小正方形的面积是1,一个直角三角形的面积是(9-1)4=2,又一个直角三角形的面积是ab=2,ab=4故选:B【点睛】本题考查了与弦图有关的计算,还要注意图形的面积和a,b之间的关系3、A【分析】根据一元二次方程根的定义,将代入方程解关于的一元二次方程,且根据一元二次方程的定义,二次项系数不为0,即可求得的值【详解】解:0是关于x的一元二次方程mx25xm2m0的一个根,且解得故
9、选A【点睛】本题考查了一元二次方程根的定义,一元二次方程的定义,因式分解法解一元二次方程,注意是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程4、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出BDE是直角三角形,计算出面积即可【详解】解: 菱形ABCD, 在RtBCO中, 即可得BD=8, 四边形ACED是平行四边形, AC=DE=6, BE=BC+CE=10, 线 封 密 内
10、号学级年名姓 线 封 密 外 BDE是直角三角形, SBDE=DEBD=24 故选:B【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD的长度,判断BDE是直角三角形,是解答本题的关键5、A【分析】由一元二次方程的定义判断即可【详解】A. 只含有一个未知数,并且是未知数的最高次数2的整式方程,是一元二次方程,符合题意,故正确B. 有两个未知数,不符合题意,故错误C. 不是整式方程,不符合题意,故错误D. 有两个未知数,不符合题意,故错误故选:A【点睛】本题考查了一元二次方程的定义,只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程6
11、、A【分析】求出方程的解,求出方程的最小值,即可求出答案【详解】x2-2x-1=0,x2-2x+1=2,即(x-1)2=2,x=1,方程的最小值是1-,12,-2-1,1-21-1+1,-11-0,-1x10,故选:A【点睛】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估算无理数的大小7、C【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可【详解】解:DCE=128,DCB=180-DCE=180-128=52,四边形ABCD是平行四边形, 线 封 密 内 号学级年名姓 线 封 密 外 A=DCB=52,故选:C【点睛】本题主要考
12、查了平行四边形的性质以及平角的定义,熟记平行四边形的各种性质是解题关键平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形的对角线互相平分8、C【分析】根据二次根式的性质化简,进而根据无理数的大小估计即可求得答案【详解】解:,故选C【点睛】本题考查了二次根式的混合运算,无理数的大小估算,掌握二次根式的性质是解题的关键9、A【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项【详解】解:A、由三内角之比为3:4:5可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为515=75,故不是直角三角形,符合题意;B、由三边长的平方之比为1:2:3可知
13、该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C、由三边长之比为7:24:25可设这个三角形的三边长分别为,则有,所以是直角三角形,故不符合题意;D、由三内角之比为1:2:3可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为330=90,是直角三角形,故不符合题意;故选A【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键10、C【分析】根据多边形的内角和,可得答案【详解】解:设多边形为边形,由题意,得,解得,故选:C【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和二
14、、填空题1、且【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据分母不等于0,且被开方数是非负数列式求解即可【详解】由题意得且解得且故答案为:且【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:当代数式是整式时,字母可取全体实数;当代数式是分式时,考虑分式的分母不能为0;当代数式是二次根式时,被开方数为非负数2、1080【分析】根据多边形的外角和是360度,每个外角都相等,即可求得外角和中外角的个数,即多边形的边数,根据内角和定理即可求得内角和【详解】解:多边形的边数是:36045=8,则多边形的内角和是:(8-2)180=1080故答案
15、为:1080【点睛】本题主要考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化,因而把求多边形内角的计算转化为外角的计算,可以使计算简便3、【分析】利用等边三角形的性质即可证明出;在四边形中,根据,可得,即;先求出,得,通过等量代换即可;根据即可判断【详解】解:和都是等边三角形,故正确;,在四边形中,故错误;,故正确;,不一定等于, 线 封 密 内 号学级年名姓 线 封 密 外 不一定成立,故错误;故答案是:【点睛】本题考查了等边三角形的性质,三角形全等的判定定理、勾股定理、多边形内角和,解题的关键掌握等边三角形的性质,通过等量代换的思想进行求解4、#【分析
16、】证明AMCBNC,可得,再根据三角形三边关系得出当点N落在线段AB上时,最小,求出最小值即可【详解】解:线段绕点C顺时针旋转得到线段,AMCBNC,的最小值为;故答案为:【点睛】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出,根据三角形三边关系取得最小值5、#【分析】求出的度数,利用计算即可【详解】四边形ABCD是正方形,故答案为:【点睛】本题考查了正方形的性质和扇形面积公式,计算扇形面积时,应该先求出弧所在圆的半径以及弧所对的圆心角的度数三、解答题1、(1)x1=5,x2=-1;(2)x1=4,x2=-2【分析】(1)根据直接开方法即可求出答案;(2)根据因式分
17、解法即可求出答案(1) 线 封 密 内 号学级年名姓 线 封 密 外 解:(x-2)2=9,x-2=3,x=23,x1=5,x2=-1;(2)解:x22x8=0,因式分解得(x-4)(x+2)=0,x-4=0或x+2=0,x1=4,x2=-2【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键2、(1)的长为4(2)AC=CD+DB;证明见解析【分析】(1)根据三角形的面积公式得出CP,进而利用勾股定理得出PA即可;(2)延长BD,过A作AOBC,利用平行四边形的性质解答即可(
18、1),的面积为9,由勾股定理得:;(2)过作交BD的延长线于点O,四边形是平行四边形,AC=BO,是的中点,延长肯定可以过点点,的平分线交于点,【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了平行线的性质,角平分线的性质和平行四边形的性质,解题的关键是根据平行四边形的性质进行解答3、(1)270;45;(2),AB与MN所在直线相交所成的锐角度数为45,理由见解析;(3)650米【分析】(1)延长CD与BA延长线交于点P,则P=90,可以得到B+C=90,再由B+C+BAD+ADC=360,即可得到BAD+ADC=270;延长CD交BA延长线于P,过点D作DEAB交BC于E,
19、则DEC=B,由等垂四边形的两底平行,即ADBC,可证四边形ABED是平行四边形,得到DE=AB,再由AB=CD,ABCD得到DE=CD,DECD,则DEC=C=45,即四边形ABCD的最小内角为45;(2)延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,则CD=AB=DE,ABDE,即可推出DEC=DCE,EDC=EDP=BPD=90,由勾股定理得到,DEC=DCE=45,再证MN是BCE的中位线,得到,MNCE,则NQC=DCE=45,由此即可推出直线A
20、B与直线MN所在直线相交所成的锐角度数为45;延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,则,即,由(2)可知,即可推出,再由PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,则;(3)仿照(2)进行求解即可(1)解:如图所示,延长CD与BA延长线交于点P,四边形ABCD为等垂四边形,即AB=CD,ABCD,P=90,B+C=90,B+C+BAD+ADC=360,BAD+ADC=270,故答案为:270;如图所示,延长CD交BA延长线于P,过点D作DEAB交BC于E,DEC=
21、B,等垂四边形的两底平行,即ADBC,四边形ABED是平行四边形,DE=AB,又AB=CD,ABCDDE=CD,DECD,DEC=C=45,四边形ABCD的最小内角为45,故答案为:45;(2) 线 封 密 内 号学级年名姓 线 封 密 外 解:,AB与MN所在直线相交所成的锐角度数为45,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,四边形ABCD是等垂四边形,AB=CD,ABCD,BPC=90,M是AD的中点,MA=MD,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,CD=AB=DE,A
22、BDE,DEC=DCE,EDC=EDP=BPD=90,DEC=DCE=45,又M、N分别是BE,BC的中点,MN是BCE的中位线,MNCE,NQC=DCE=45,BPC=90,QPF=90,QFP=45,直线AB与直线MN所在直线相交所成的锐角度数为45;如图所示,延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,即,由(2)可知,又PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,故答案为:;(3)解:如图所示,取AB,CD的中点M,N,连接MN,作点C关于M的对称点E,连接CE
23、,AE,DE,设直线l1与直线l2交于点P, 线 封 密 内 号学级年名姓 线 封 密 外 由(2)可知,AEBC,AE=BC=240米,l1l2,APB=PAE=90,DAE=90,米,M、N分别是CE,CD的中点,MN是CED的中位线,米,MNDE,M为AB的中点,APB=90,米,同理可得,即米,米,隔离带最长为650米【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解4、(1)(2)【分析】(1)直接利用因式分解法解方程即可;(2)用配方法解方程即可(1)(2)【点睛】本题主要考查一元二次方程的解法,熟练掌握各种解法是解题的关键5、绳索长是尺【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设,则,由勾股定理及即可求解【详解】设,则,在中,解得:,答:绳索长是尺【点睛】本题考查勾股定理得应用,用题意列出等量关系式是解题的关键