《2022年最新北师大版八年级数学下册第三章图形的平移与旋转定向训练试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年最新北师大版八年级数学下册第三章图形的平移与旋转定向训练试题(精选).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、八年级数学下册第三章图形的平移与旋转定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组图形中,能够通过平移得到的一组是( )ABCD2、下列图形中,既是轴对称图形,又是中心对称图形的是( )
2、ABCD3、如图,三角形中,将绕点B逆时针旋转得到,使点C的对应点恰好落在边上,则的度数是( )ABCD4、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5、下列图形中,是中心对称图形的是( )ABCD6、已知点关于原点的对称点在一次函数的图象上,则实数的值为( )A1B-1C-2D27、如图,在ABC中,BAC130,将ABC绕点C逆时针旋转得到DEC,点A,B的对应点分别为D,E,连接AD当点A,D,E在同一条直线上时,则BAD的大小是()A80B70C60D508、下列图形中,是中心对称图形的是( )ABCD9、如图,将OAB绕点O逆时针旋转80得到OCD,若A的度数为110
3、,D的度数为40,则AOD的度数是( )A50B60C40D3010、已知A(3,2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则xy的值是( )A1B0C1D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将边长为的等边向右平移,得到,此时阴影部分的周长为_2、坐标平面内的点P(m,2020)与点Q(2021,n)关于原点对称,则mn_3、小华将平面直角坐标系中的点A向上平移了3个单位长度,得到对应点A1(,1),则点A的坐标为_4、在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),
4、若点A与点B关于原点O对称,则ab_5、在平面直角坐标系中点M(2,4)关于原点对称的点的坐标为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形网格中,每个小正方形的边长均为1,ABC的三个顶点都在格点上,结合所给的平面直角坐标系,解答下列问题:(1)请画出ABC关于x轴成轴对称的A1B1C1,并写出点A1的坐标;(2)请画出ABC关于点O成中心对称的A2B2C2,并写出点A2的坐标;(3)A1B1C1与A2B2C2关于某直线成轴对称吗?若是,请写出对称轴;若不是,请说明理由2、如图,将两个完全相同的三角形纸片ABC与DEC重合放置,其中C90,BE30,如图,固定ABC,
5、使DEC绕点C旋转,当点D恰好落在AB边上时,DE交BC于点F,求证DEAC3、如图,ABC是等边三角形,点D在AC边上,将BCD绕点C旋转得到ACE(1)求证:DEBC;(2)若AB8,BD7,求ADE的周长4、在等边中,是边上一动点,连接,将绕点顺时针旋转120,得到,连接(1)如图1,当、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点若,请直接写出的值5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,点C的坐标为(0, -1), (1)写
6、出A、B两点的坐标;(2)画出ABC关于y轴对称的A1B1C1 ; (3)画出ABC绕点C旋转180后得到的A2B2C2-参考答案-一、单选题1、B【分析】根据平移的性质对各选项进行判断【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键2、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A不是中心对称图形,是轴对称图形,故此选项不合题意;B是轴对称图形,也是中心对称图形,故此选项符合题意;C是轴
7、对称图形,不是中心对称图形,故此选项不合题意;D不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形3、A【分析】根据旋转的性质,可得 ,即可求解【详解】解:根据题意得:ABC=ABC故选:A【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转前后对应角相等,对应边相等是解题的关键4、D【详解】解:A不是轴对称图形,是中心对称图形,故
8、本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后
9、与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键6、B【分析】求出点关于原点的对称点的坐标,代入函数解析式中求解即可【详解】解:点关于原点的对称点的坐标为(-2,3),代入得,解得,故选:B【点睛】本题考查了关于原点对称的点的坐标特征和待定系数法,解题关键是求出对称点的坐标,熟练运用待定系数法求值7、A【分析】根据三角形
10、旋转得出,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到DAC=50,由此即可求解【详解】证明:绕点C逆时针旋转得到,ADC=DAC,点A,D,E在同一条直线上,DAC=50,BAD=BAC-DAC=80故选A【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质8、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形
11、,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将OAB绕点O逆时针旋转80得到OCD, A的度数为110,D的度数为40, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.10、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y【详解】A(3,2),B(1,0)平移后的对应点C
12、(5,x),D(y,0),平移方法为向右平移2个单位,x2,y3,x+y1,故选:C【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加二、填空题1、12【分析】先确定平移距离,从而确定阴影等边三角形的边长,计算周长即可【详解】为等边三角形,等边向右平移得到,阴影部分为等边三角形,阴影部分的周长为故答案为:【点睛】本题考查了等边三角形的性质和判定,平移的性质,熟练掌握平移的性质,等边三角形的性质是解题的关键2、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解【详解】解:点P(m,-2020)
13、与点Q(2021,n)关于原点对称,m=2021,n=2020,mn=1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数3、【分析】根据题意,将向下平移3个单位长度即可得到点A;【详解】点A向上平移了3个单位长度,得到对应点A1(,1),将向下平移3个单位长度即可得到点A,点A的坐标是;故答案是【点睛】本题主要考查了坐标与图形平移变化,准确分析计算是解题的关键4、-1【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a4,b-3,则
14、ab-4+3=-1故答案为:1【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键5、【分析】根据在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数,即可求解【详解】解:点M(2,4)关于原点对称的点的坐标为 故答案为:【点睛】本题主要考查了两点关于坐标原点对称的特征,熟练掌握在平面直角坐标系中,若两点关于原点对称,则这两点的横纵坐标均互为相反数是解题的关键三、解答题1、(1)画图见解析,点A1的坐标;(-4,3);(2)画图见解析,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【分析】(1)分别作出A,B,C的对
15、应点A1,B1,C1即可;(2)分别作出A,B,C的对应点A2,B2,C2即可;(3)根据轴对称的定义判断即可【详解】解:(1)如图,A1B1C1即为所求,点A的对应点A1的坐标;(-4,3);(2)如图,A2B2C2即为所求,点A2的坐标(4,3);(3)A1B1C1与A2B2C2关于y轴成轴对称,对称轴为y轴【点睛】本题考查作图-旋转变换,轴对称变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题注意:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数2、见解析【分析
16、】先根据直角三角形两锐角互余求出A=60,再由由旋转的性质可得,CD=CA,EDC=A=60,即可证明ACD=60,推出ACD=EDC=60,则DEAC【详解】解:ACB90,BE30,A=60,由旋转的性质可得,CD=CA,EDC=A=60,ACD是等边三角形,ACD=60,ACD=EDC=60,DEAC【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,直角三角形两锐角互余,平行线的判定,推出ACD是等边三角形是解题的关键3、(1)见解析;(2)15【分析】(1)根据旋转的性质可得,进而证明是等边三角形,进而可得,即可证明;(2)根据旋转的性质可得,又是等边三角形,则,即可求得ADE
17、的周长等于【详解】(1)解:ABC是等边三角形,将BCD绕点C旋转得到ACE,是等边三角形;(2)将BCD绕点C旋转得到ACE,是等边三角形, AB8,BD7,ADE的周长等于【点睛】本题考查了旋转的性质,三角形全等的性质,等边三角形的性质,平行线的判定,掌握旋转的性质是解题的关键4、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可
18、得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120,得到,是等边三角形,在中,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120,得到,是等边三角形,是等边三角形设,则,,,是等边三角形,即(3) 如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中
19、【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键5、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析【分析】(1)根据 A,B 的位置写出坐标即可;(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后
20、描点,顺次连结A2B2, B2C2,C2A2即可【详解】(1)由题意 A(-1,2),B(-3,1)(2)ABC关于y轴对称的A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,A(-1,2),B(-3,1)C(0,-1),A1(1,2),B1(3,1),C1(0,-1),在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,如图A1B1C1即为所求(3)ABC绕点C旋转180后得到的A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,A(-1,2),B(-3,1)C(0,-1),A2、B2、C2的横坐标分别为1,3,0,纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,A2(1,-4)、B2(3,-3)、C2(0,-1),在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,如图A2B2C2即为所求【点睛】本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型